Optimized design with topology and shape optimization

Author(s):  
D Spath ◽  
W Neithardt ◽  
C Bangert

International competition forces companies to use computer methods in order to accelerate the time-consuming development processes and further to improve the product quality. The use of numeric optimization methods can be very helpful to obtain ‘systematic and proper’ solution variants. Solutions that have been generated automatically provide the designer with new, previously unknown suggestions for problem solution. These structural optimization tools have not yet been sufficiently integrated into the design process. Within a research project, software companies, research institutes and users are working on the integration of topology and shape optimization. This article presents an example of this process and describes the potential of the structure optimization tools based on the example of a machine tool.

2015 ◽  
Vol 789-790 ◽  
pp. 306-310
Author(s):  
Jin Woo Lee

This work presents the framework to optimally design a cantilever for torsion mode frequency maximization. A cantilever design problem is formulated by topology and shape optimization methods. The torsion mode frequency is selected as an objective function, and the volume of the cantilever and the first bending mode frequency are constrained. Two optimization problems are defined and sequentially solved for the specific values. A new idea in this work is using a final topology obtained in the topology optimization problem as an initial shape in the shape optimization problem. The torsional mode frequency of the optimized cantilever is well improved in comparison with a nominal cantilever.


2021 ◽  
Vol 64 (4) ◽  
pp. 2687-2707
Author(s):  
Gabriel Stankiewicz ◽  
Chaitanya Dev ◽  
Paul Steinmann

AbstractDensity-based topology optimization and node-based shape optimization are often used sequentially to generate production-ready designs. In this work, we address the challenge to couple density-based topology optimization and node-based shape optimization into a single optimization problem by using an embedding domain discretization technique. In our approach, a variable shape is explicitly represented by the boundary of an embedded body. Furthermore, the embedding domain in form of a structured mesh allows us to introduce a variable, pseudo-density field. In this way, we attempt to bring the advantages of both topology and shape optimization methods together and to provide an efficient way to design fine-tuned structures without predefined topological features.


2011 ◽  
Vol 47 ◽  
Author(s):  
Stefan Gruner ◽  
Johan Van Zyl

Small software companies make for the majority of software companies around the world, but their software development processes are often not as clearly defined and structured as in their larger counterparts. Especially the test process is often the most neglected part of the software process. This contribution analyses the software testing process in a small South African IT company, here called X, to determine the problems that currently cause it to deliver software fraught with too many defects. The findings of a survey conducted with all software developers in company X are discussed, and several typical problems are identified. We also discuss two prevalent test process improvement models that can be used to reason about the possibilities of process improvement. Solutions to those (or similar) problems often already exist, but a major part of the problem addressed in this contribution is the unawareness, or unfamiliarity, of many small industrial software developers and IT managers as far as the scientific literature on software science and engineering, and especially in our case: software testing, is concerned.


Author(s):  
G.B. Kryzhevich ◽  
A.R. Filatov

Объектом исследования является крышка люкового закрытия сухогрузного судна, служащая для обеспечения непроницаемости грузовых помещений и перевозки на ней грузов и обеспечивающая безопасность сухогрузных судов и осуществляемой на них морской перевозки грузов. Большая материалоемкость крышек снижает экономическую эффективность судна, ведет к необходимости использования мощных и массогабаритных средств подъема крышек (для съемных люковых закрытий), либо поворота и передвижения крышек (для шарнирно-откидных закрытий). Целью статьи является существенное снижение материалоемкости крышек люкового закрытия за счет рационального выбора их материала и конструктивного оформления при одновременном обеспечении требуемого уровня их надежности. Параметрическая оптимизация традиционной стальной крышки люкового закрытия сухогрузного судна проекта RSD59 может привести к снижению ее массы не более чем на 15-17. Поэтому для достижения цели работы решается задача оптимизации конструкции алюминиевой крышки на основе комплексного подхода, состоящего в последовательном использовании топологических и параметрических оптимизационных методов и выполнении на последней стадии работы снижения уровня концентрации напряжений путем оптимизации формы узлов крышки. При этом на стадии выбора конструктивно-силовой схемы крышки применяются приёмы топологической оптимизации, на стадии выбора толщин и параметров силовых элементов способы параметрической оптимизации, а на стадии конструктивно-технологического оформления узлов методы оптимизации формы. Выполненные расчетные исследования привели к следующим основным результатам: к выявлению прогрессивных конструктивно-силовых схем и конструктивно-технологических решений, обеспечивающих значительное снижению массы крышек люковых закрытий при умеренных затратах на их изготовление к высоким оценкам эффективности использования современных алюминиевых сплавов для изготовления люковых закрытий, способствующим существенному снижению их материалоемкости (примерно двукратному и более по сравнению с использованием стали), улучшению условий их функционирования и проведения погрузочно-разгрузочных работ на сухогрузных судах к выводу об эффективности использования разработанных конструкторских решений для крышек люковых закрытий при создании перспективных сухогрузных судов.A bulk carrier hatch cover, which provides cargo compartments impermeability and cargo transportation on the cover, as well as safety of bulk carriers and sea cargo transportation in them, is studied. Cover high material consumption decreases vessel profitability, causes the necessity to use either powerful and mass-dimensional cover lifting devices (for removable hatch covers) or covers rotation and movement (for hinged covers). The purpose of this paper consists in considerable decrease of hatch cover material consumption through rational selection of covers material and design at provision of the required covers reliability level. Parametric optimization of a conventional steel cover of RSD59 project bulk carrier could result in cover mass decrease by more than 15 to 17. Therefore, to achieve the work purpose, a problem of aluminum cover structural optimization was solved based on a comprehensive approach that consisted in successive use of topologic and parametric optimization methods and decrease of the stress concentration level at the last step via cover assemblies shape optimization. At that topological optimization methods were applied at the stage of selecting cover structural arrangement parametric optimization methods were applied at the stage of selecting load-carrying elements thickness and parameters, and shape optimization methods were used at the stage of structural and technology design of assemblies. The performed calculation studies resulted in the following: revealing the advanced structural arrangements and design and technology solutions that provide considerable hatch covers mass decrease at reasonable costs for their manufacture high assessment of using advanced aluminum alloys for manufacturing hatch covers that promote considerable decrease of their material consumption (approximately up to twofold or greater in comparison with steel), improving conditions of cover functioning and handling operation in bulk carriers conclusion on effectiveness of using developed design solutions for hatch covers when creating prospective bulk carriers.


2017 ◽  
Vol 23 (2) ◽  
pp. 305-319 ◽  
Author(s):  
Recep M. Gorguluarslan ◽  
Umesh N. Gandhi ◽  
Yuyang Song ◽  
Seung-Kyum Choi

Purpose Methods to optimize lattice structure design, such as ground structure optimization, have been shown to be useful when generating efficient design concepts with complex truss-like cellular structures. Unfortunately, designs suggested by lattice structure optimization methods are often infeasible because the obtained cross-sectional parameter values cannot be fabricated by additive manufacturing (AM) processes, and it is often very difficult to transform a design proposal into one that can be additively designed. This paper aims to propose an improved, two-phase lattice structure optimization framework that considers manufacturing constraints for the AM process. Design/methodology/approach The proposed framework uses a conventional ground structure optimization method in the first phase. In the second phase, the results from the ground structure optimization are modified according to the pre-determined manufacturing constraints using a second optimization procedure. To decrease the computational cost of the optimization process, an efficient gradient-based optimization algorithm, namely, the method of feasible directions (MFDs), is integrated into this framework. The developed framework is applied to three different design examples. The efficacy of the framework is compared to that of existing lattice structure optimization methods. Findings The proposed optimization framework provided designs more efficiently and with better performance than the existing optimization methods. Practical implications The proposed framework can be used effectively for optimizing complex lattice-based structures. Originality/value An improved optimization framework that efficiently considers the AM constraints was reported for the design of lattice-based structures.


Sign in / Sign up

Export Citation Format

Share Document