Searching sheet metal parts based on bending process similarity

Author(s):  
D Misaki ◽  
S Aomura

Sheet metal parts have been widely used in industry and much information for parts has been accumulated in a database. In planning the manufacturing process of a sheet metal part, if the process plan of a similar part can be retrieved from the database, the process planning would be faster and more consistent. In this paper, an effective method of searching the sheet metal parts based on bending process similarity is proposed. This method consists of two stages. In the first stage, flat pattern drawings of the parts with the same set-up numbers are classified into several topological structures. In the second stage, the parts that possess a similar bending process to the target part are selected. The bending process similarity is defined by the grasping position of a robot gripper. The number of reposition and grasping positions are decided by taking the geometric element of the flat pattern into consideration. The effectiveness of this method is described and illustrative examples are shown.

2014 ◽  
Vol 1035 ◽  
pp. 128-133 ◽  
Author(s):  
Xue Zhi Liu ◽  
Chun Guo Liu ◽  
Yuan Yao ◽  
Xue Guang Zhang

As a new technique to form sheet metal parts, Multi-point forming (MPF) also can be used on bending aluminum alloy profile. Since the Multi-Point Die (MPD) which replaces the traditional solid bending die is composed of many discrete punch elements, dimples always occur on the plate of profiles. To eliminate the dimpling defects, numerical simulation of the bending process with A6N01S-T5 aluminum alloy hollow profile using MPD were conducted. By comparing the bending effects on MPD with different size of punch elements and with different kind of elastic cushion, reasonable forming parameters were obtained. Pressing of Aluminum alloy profile with different radii on the MPD and solid die were simulated. The cross-section distortion indicated that the aluminum alloy profile can be formed with MPF technique while it has the advantage of flexibility. For the profile with large deformation, multi-step MPF method is a better choice due to its rapid reconfigurable characteristic.


2009 ◽  
Vol 623 ◽  
pp. 37-48 ◽  
Author(s):  
Steeve Dejardin ◽  
Jean Claude Gelin ◽  
Sebastien Thibaud

The paper is related to the analysis of shape distortions and springback effects arising in Single Point Incremental Forming. An experimental set up has been designed and manufactured to carry single point incremental forming on small size sheet metal parts. The experimental set up is mounted on 3-axes CNC milling machine tool and the forming tool is attached and move with the spindle. Experiments have been carried out on sheet metal parts to obtain tronconical shapes. The forming strategy associated to the movement of the forming tool has been also investigated. The experiments indicate that shape distortions arising in the corners of the tronconical shape are clearly related to forming strategy. The springback of rings cut in the tronconical parts have been also investigated. It is shown that positive or negative springback could be also related to forming strategy. In order to enhance experimental investigations, Finite Element simulations of the incremental sheet forming have been performed. Results obtained from the simulations prove that if boundary conditions and forming strategy carefully are taking into account, the finite elements results are in good agreement with experiments. So it is then possible to use FEM as a design tool for incremental sheet forming.


2001 ◽  
Vol 4 (3-4) ◽  
pp. 319-333
Author(s):  
Vincent Lemiale ◽  
Philippe Picart ◽  
Sébastien Meunier

Sign in / Sign up

Export Citation Format

Share Document