High-pressure phase transformation as the mechanism of ductile chip formation in nanoscale cutting of silicon wafer

Author(s):  
M B Cai ◽  
X P Li ◽  
M Rahman

In nanoscale cutting of silicon wafer, it has been found that under certain conditions ductile mode chip formation can be achieved. In order to understand the mechanism of the ductile chip formation, experiments and molecular dynamics (MD) simulations have been conducted in this study. The results of MD simulations of nanoscale cutting of silicon showed that because of the high hydrostatic pressure in the chip formation zone, there is a phase transformation of the monocrytslline silicon from diamond cubic structure to both β silicon and amorphous phase in the chip formation zone, which results in plastic deformation of the workpiece material in the chip formation zone, as observed in experiments. The results further showed that although from experimental observation the plastic deformation in the ductile mode cutting of silicon is similar to that in cutting of ductile materials, such as aluminium, in ductile mode cutting of silicon it is the phase transformation of silicon rather than atomic dislocation that results in the plastic deformation.

2006 ◽  
Vol 129 (2) ◽  
pp. 281-286 ◽  
Author(s):  
M. B. Cai ◽  
X. P. Li ◽  
M. Rahman

In nanoscale ductile mode cutting of the monocrystalline silicon wafer, micro-, or nanogrooves on the diamond cutting tool flank face are often observed, which is beyond the understanding based on conventional cutting processes because the silicon workpiece material is monocrystalline and the hardness is lower than that of the diamond cutting tool at room temperature. In this study, the mechanism of the groove wear in nanoscale ductile mode cutting of monocrystalline silicon by diamond is investigated by molecular dynamics simulation of the cutting process. The results show that the temperature rise in the chip formation zone could soften the material at the flank face of the diamond cutting tool. Also, the high hydrostatic pressure in the chip formation region could result in the workpiece material phase transformation from monocrystalline to amorphous, in which the material interatomic bond length varies, yielding atom groups of much shorter bond lengths. Such atom groups could be many times harder than that of the original monocrystalline silicon and could act as “dynamic hard particles” in the material. Having the dynamic hard particles ploughing on the softened flank face of the diamond tool, the micro-/nanogrooves could be formed, yielding the micro-/nanogroove wear as observed.


2011 ◽  
Vol 4 (3) ◽  
pp. 191
Author(s):  
Hiroo Shizuka ◽  
Koichi Okuda ◽  
Masayuki Nunobiki ◽  
Wei Li ◽  
Takanobu Inaoka

2011 ◽  
Vol 239-242 ◽  
pp. 1300-1303
Author(s):  
Hong Cai Wang ◽  
Minoru Umemoto ◽  
Innocent Shuro ◽  
Yoshikazu Todaka ◽  
Ho Hung Kuo

SUS316L austenitic stainless steel was subjected to severe plastic deformation (SPD) by the method of high pressure torsion (HPT). From a fully austenitic matrix (γ), HPT resulted in phase transformation from g®a¢. The largest volume fraction of 70% a¢ was obtained at 0.2 revolutions per minute (rpm) while was limited to 3% at 5rpm. Pre-straining of g by HPT at 5rpm decreases the volume fraction of a¢ obtained by HPT at 0.2rpm. By HPT at 5rpm, a¢®g reverse transformation was observed for a¢ produced by HPT at 0.2rpm.


Sign in / Sign up

Export Citation Format

Share Document