diamond cutting
Recently Published Documents


TOTAL DOCUMENTS

365
(FIVE YEARS 69)

H-INDEX

23
(FIVE YEARS 6)

Author(s):  
Kai Egashira ◽  
Eisuke Koya ◽  
Ryosuke Nara ◽  
Keishi Yamaguchi ◽  
Minoru Ota
Keyword(s):  

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1448
Author(s):  
Wei Yuan ◽  
Chi-Fai Cheung

Previous models of the relative tool-work vibration are not generalized to represent the surface generation mechanism in the ultra-precision tool servo-based diamond cutting (UTSDC) of three-dimensional (3D) microstructured surfaces. This is due to the fact that the tool-work vibration in UTSDC is no longer a steady harmonic vibration with a constant amplitude but is influenced by the tool motion along the thrust direction. In this paper, dynamic modeling of the cutting system is presented for the characterization of surface topography variation in UTSDC of a microlens array considering the tool-work vibration as an underdamped vibration. The natural frequency and damping ratio of the cutting system are determined by the data-dependent systems (DDS) method. Based on the analysis of the surface profile and cutting force signals, it is found that the tool-work vibration is significantly enhanced in the cut-in process when the cutting speed increases. The simulation results show that the proposed dynamic model can well-determine root-mean-squares RMS values of the surface primary profile and the dynamic force acting on the force sensor. The dynamic model provides insight into the formation of the surface topography variation in UTSDC of 3D microstructured surfaces, and the model might be applied in self-optimized machining systems in the future.


2021 ◽  
Vol 11 (21) ◽  
pp. 10302
Author(s):  
Xuesen Zhao ◽  
Haiping Du ◽  
Wenda Song ◽  
Qiang Zhang ◽  
Zhenjiang Hu ◽  
...  

While curved surface microstructures have wide applications in optical components and devices, how to achieve high machining accuracy of the microstructures is crucial for their applications. In the present work, we fabricate sinusoidal modulation microstructures on a curved copper surface by ultra-precision diamond cutting, with the combination of a rotary B-axis and a fast tool servo system. Specifically, tool path planning, together with the consideration of a curved, sinusoidal surface meshing and tool tip arc segmentation compensation, is carried out. Preliminary cutting experiments are firstly carried out on a homemade four-axis ultra-precision lathe, which demonstrates the advantages of additionally applying the rotary B-axis in suppressing burr formations and over-cutting phenomenon over the sole utilization of the fast tool servo system. Subsequent experiments are carried out to evaluate the effects of feed rate and the number of sampling points on the machining accuracy of the microstructures under the combination of a rotary B-axis and a fast tool servo system. With the optimized machining parameters, sinusoidal modulation microstructures, which have a wavelength of 700.6 μm, a peak-to-valley of 18.7 μm, a surface roughness of 18.9 nm and a deviation of profile tolerance of 4.326 μm, are successfully fabricated on a curved copper surface with a face radius of 10 mm and a curvature radius of 500 mm.


2021 ◽  
Vol 119 ◽  
pp. 108585
Author(s):  
Serkan Islak ◽  
Cihan Özorak ◽  
Naser Matoug Emhmed Abouacha ◽  
Uğur Çalıgülü ◽  
Vahdettin Koç ◽  
...  

Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 257
Author(s):  
Xuesen Zhao ◽  
Xiangwu Cui ◽  
Zhenjiang Hu ◽  
Qiang Zhang ◽  
Tao Sun

With its standardized and unified interface, the quick-change fixture is an important part for maintaining high efficiency without compensation of precision in the metal-turning process because it can conveniently realize high-precision repeated clamping and multi-station conversion without complex positioning and adjustment steps. However, the existing quick-change fixture products and related research cannot fully meet the needs of repeatability and applicability raised from ultra-precision, single-point diamond turning with ultra-high accuracy and ultra-small depth of cut. In this paper, we develop a quick-change fixture for ultra-precision diamond turning, in which the end-toothed disc acts as the positioning element. Specifically, the main parameters of two key components of the end-toothed disc and slotted disc spring are calculated analytically to ensure the positioning accuracy of the designed fixture used in the rotation condition, which is further ensured by controlling the machining tolerance of the tooth profile of the end-toothed disc. Additionally, finite element simulations are performed to investigate the static and modal states of the quick-change fixture, which demonstrate a maximum deformation of about 0.9 μm and a minimum natural frequency of 5655.9 Hz for the designed fixture. Two high-precision sensors are used to detect the radial jump and end run-out values after repeated clamping actions, which are employed to verify the repetitive positioning accuracy of the fixture. Subsequent finite-element simulation of the clamping of small-diameter copper bar, as well as the diamond turning experiment, jointly demonstrate that the designed fixture can achieve a precision of 1 μm. Current work provides an effective quick-change fixture to reduce the deformation of a weak-stiffness workpiece caused by clamping deformation in ultra-precision diamond cutting.


2021 ◽  
Vol 70 ◽  
pp. 578-592
Author(s):  
Shiquan Liu ◽  
Haijun Zhang ◽  
Liang Zhao ◽  
Guo Li ◽  
Chunyu Zhang ◽  
...  

2021 ◽  
Vol 5 (9) ◽  
pp. 235
Author(s):  
Benjamin Clauß ◽  
Andreas Schubert

Aluminium matrix composites (AMCs) represent suitable materials for lightweight design applications. The abrasive ceramic reinforcements typically require diamond cutting materials to prevent excessive tool wear. In milling with diamond cutting materials the influence of cutting parameters was already examined to a significant extent. Investigations concerning the effect of modified tool geometries are limited and the potentials with regard to the geometrical and physical surface properties are unclear. Accordingly, experimental investigations in milling of a 10 vol.% SiC particle-reinforced aluminium wrought alloy EN AW-2017 T4 were addressed. The effect of modified corner and minor cutting edge geometries were investigated based on mono crystalline diamond (MCD)-tipped tools to benefit stable process conditions. The results indicated achievable areal roughness values in the range around 0.2μm. Especially the application of the lowest cutting edge angle and a trailing minor cutting edge led to strong fluctuations of the surface parameters. The lowest valley void volumes were achieved with an arched minor cutting edge. Generally, finish machining led to stronger compressive residual stresses compared to the state prior to machining. The strongest increase was achieved using a corner radius combined with a straight minor cutting edge. It is concluded that reduced effective radii generating the surface enable an acceptable surface structure and strong compressive residual stresses and should be addressed in further investigations.


2021 ◽  
Vol 3 (56) ◽  
pp. 25-41
Author(s):  
Alexander E. KOVENSKY ◽  
◽  
Vladimir L. BASINIUK ◽  
Ryta E. VOLKOTRUB ◽  
◽  
...  

The article presents the results of studies of the shaft oscillation processes of a precision horizontal highspeed electric spindle with aerostatic radial and axial supports, used at Planar OJSC in equipment for separation of semiconductor plates into crystals. The studies were carried out using the developed mathematical models that take into account the design features of these electric spindles, including the cantilever mounting of the cutting tool, the imbalance of the diamond disc with the mandrel and the mass ratio of the main components of the electric spindle, as well as the results of their full-scale tests. Based on the analysis of the data obtained, regularities are shown that connect the amplitude values of the oscillations of the electric spindle shaft with the imbalance of the diamond disc with the mandrel and the rotational speed of the electric spindle, which made it possible to propose engineering dependences for choosing the permissible values of the imbalance and rational, from the standpoint of resonance conditions and permissible shaft oscillations, rotational speed of the electric spindle. Recommendations have been developed for the creation of a system for monitoring and active control of the parameters and functioning of the electric spindle in the process of separating semiconductor plates into crystals, which make it possible to use the resonant mode of radial oscillations to improve cutting conditions, excluding direct contact of the working surfaces of aerostatic supports, their seizure and loss of performance of the electric spindle. The article presents a method of selecting the operation parameters of a high-speed precision horizontal electric spindle with aerostatic radial and axial supports and a cantilever mounting of a diamond cutting disc. It is based on the analysis of the simulation results of shaft forced oscillations and data on the shaft oscillations during the operation of the electric spindle with different rotation frequencies and imbalances. The results obtained can be used to monitor shaft oscillations during the operation of the electric spindle, while the high operation efficiency of which is achieved by adaptive control of rotation frequencies taking into account the amplitudes of these oscillations.


Sign in / Sign up

Export Citation Format

Share Document