Inelastic finite element analysis of fibre-reinforced composite laminates with damage

Author(s):  
C L Chow ◽  
F Yang

In this study, a method of finite element analysis is presented to examine the three-dimensional inelastic behaviour of fibre-reinforced composite laminates with damage. The constitutive model for the characterization of mechanical responses of non-linear composite materials to damage that was proposed recently by the authors is employed. The formulation of the elastic damage stress-strain relationship in incremental form is first developed and then incorporated within the context of the displacement-based finite element procedure. Solution of the non-linear equilibrium equations is obtained with the modified Newton—Raphson iteration technique. Numerical implementation of the stress calculation is discussed in detail. Results predicted using the present finite element program for uniaxial off-axis tensile loading of unidirectional graphite/epoxy composite laminates show satisfactory agreement with those obtained from experiments. Other results describing the development of damage zones, the inelastic effect on stress distributions and material property variations due to damage in cross-ply laminated composite structures are also examined and discussed.

2015 ◽  
Vol 815 ◽  
pp. 49-53
Author(s):  
Nur Fitriah Isa ◽  
Mohd Zulham Affandi Mohd Zahid ◽  
Liyana Ahmad Sofri ◽  
Norrazman Zaiha Zainol ◽  
Muhammad Azizi Azizan ◽  
...  

In order to promote the efficient use of composite materials in civil engineering infrastructure, effort is being directed at the development of design criteria for composite structures. Insofar as design with regard to behavior is concerned, it is well known that a key step is to investigate the influence of geometric differences on the non-linear behavior of the panels. One possible approach is to use the validated numerical model based on the non-linear finite element analysis (FEA). The validation of the composite panel’s element using Trim-deck and Span-deck steel sheets under axial load shows that the present results have very good agreement with experimental references. The developed finite element (FE) models are found to reasonably simulate load-displacement response, stress condition, giving percentage of differences below than 15% compared to the experimental values. Trim-deck design provides better axial resistance than Span-deck. More concrete in between due to larger area of contact is the factor that contributes to its resistance.


Author(s):  
Mosfequr Rahman ◽  
Saheem Absar ◽  
F. N. U. Aktaruzzaman ◽  
Abdur Rahman ◽  
N. M. Awlad Hossain

In this work, the effect of ply stacking sequence on the structural response of multi-ply unidirectional fiber-reinforced composite laminates was evaluated using finite element analysis. The objective of this study was to develop a computational model to analyze the stress response of individual plies in a composite laminate for a given stacking sequence. A laminated composite plate structure under tensile loading was modeled in ANSYS. Stress profiles of the individual plies were obtained for each lamina. An Epoxy matrix with both unidirectional Graphite and Kevlar fibers was considered for the model. Three dimensional sectioned shell elements (SHELL181) were used for meshing the model. Several sets of stacking sequences were implemented, symmetrical to the mid-plane of the laminate. Symmetric stacking configurations of 6 layers stacked in ply angles of [0/45/-45]s, [0/60/-60]s, [0/45/90]s, and an 8-layered arrangement of [0/45/60/90]s were modeled for the analysis. The layer thickness was maintained at 0.1 mm. The results were compared against an analytical model based on the generalized Hooke’s law for orthotropic materials and classical laminate theory. A numerical formulation of the analytical model was implemented in MATLAB to evaluate the constitutive equations for each lamina. The stress distributions obtained using finite element analysis have shown good agreement with the analytical models in some of the cases.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhangxin Guo ◽  
Zhiqiang Yu ◽  
Shiyi Wei ◽  
Guoliang Qi ◽  
Yongcun Li ◽  
...  

PurposeThe cure simulation of composite structures with arbitrary geometry can be investigated by the finite element program.Design/methodology/approachFinite element method is employed in this work.FindingsThe simulated results match the experimental results well, which demonstrates the finite element analysis models are reliable. Compared with the one- and two-dimensional finite element analysis, temperature and degree of cure can be calculated at any point within composite structures in the present simulation analysis. The cure simulation of composite structures with arbitrary geometry can be investigated by the finite element program.Originality/valueA coupled thermokinetic simulation of the liquid composite molding process based on a three-dimensional finite element method is presented. The cure simulation of composite structures with arbitrary geometry can be investigated by the finite element program.


Sign in / Sign up

Export Citation Format

Share Document