A full-span free-wake model using circular-arc vortex elements and incorporating rotor trim analysis

Author(s):  
G H Xu ◽  
S J Newman
Keyword(s):  
Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3900 ◽  
Author(s):  
Jing Dong ◽  
Axelle Viré ◽  
Carlos Simao Ferreira ◽  
Zhangrui Li ◽  
Gerard van Bussel

A modified free-wake vortex ring model is proposed to compute the dynamics of a floating horizontal-axis wind turbine, which is divided into two parts. The near wake model uses a blade bound vortex model and trailed vortex model, which is developed based on vortex filament method with straight lifting lines assumption. By contrast, the far wake model is based on the vortex ring method. The proposed model is a good compromise between accuracy and computational cost, for example when compared with more complex vortex methods. The present model is used to assess the influence of floating platform motions on the performance of a horizontal-axis wind turbine rotor. The results are validated on the 5 MW NREL rotor and compared with other aerodynamic models for the same rotor subjected to different platform motions. The results show that the proposed method is reliable. In addition, the proposed method is less time consuming and has similar accuracy when comparing with more advanced vortex based methods.


Author(s):  
Dhwanil Shukla ◽  
Nandeesh Hiremath ◽  
Sahaj Patel ◽  
Narayanan Komerath

Unmanned multi-rotor VTOL vehicles have recently gained importance in various applications such as videography, surveillance, search and rescue etc. suited to their small size and relatively cheap construction. Small scale UAVs struggle in providing satisfactory performance in terms of payload, range, and endurance because of higher viscosity-dominated losses, and due to yet to be understood rotor-rotor and rotor-airframe aerodynamic interactions. Viscosity dominated rotational flow field makes most potential flow methods, such as free wake model, invalid. A full N-S based approach for this problem is too expensive. Thus, a multi-rotor aerodynamic interaction study is necessary for understanding crucial phenomena, which will help in developing physics-based models which will be instrumental in multi-rotor UAV performance prediction and design optimization. In present work, a flow visualization and a high-speed stereo Particle Image Velocimetry (SPIV) study is done on two low Reynolds number multi-rotor arrangements with the aim of capturing vortex-vortex, blade-vortex and vortex-duct interactions. The first arrangement is a coaxial rotor in forward flight and another is an in-plane quad-rotor with and without duct. Instantaneous and average PIV data is being presented here with some observations and corresponding interpretations.


10.2514/1.130 ◽  
2003 ◽  
Vol 40 (6) ◽  
pp. 1123-1130
Author(s):  
Joon W. Lim ◽  
Yung H. Yu ◽  
Wayne Johnson

2003 ◽  
Vol 40 (6) ◽  
pp. 1123-1130 ◽  
Author(s):  
Joon W. Lim ◽  
Yung H. Yu ◽  
Wayne Johnson

2011 ◽  
Vol 48 (4) ◽  
pp. 1184-1192 ◽  
Author(s):  
Seung-Jae Yoo ◽  
Min-Soo Jeong ◽  
In Lee
Keyword(s):  

1988 ◽  
Vol 33 (3) ◽  
pp. 11-19 ◽  
Author(s):  
Aviv Rosen ◽  
Avinoam Graber
Keyword(s):  

Author(s):  
Xiancheng Song ◽  
Jiang Chen ◽  
Gang Du ◽  
Lucheng Ji

The aerodynamic analysis and optimization of wind turbine based on a full free vortex wake model is presented. Instead of a simplification of the vortex wake structure, this model predict an adequate free-wake extension which can accurately take into account the profound influence of vortex sheet downstream on the aerodynamic performance of wind turbine. The problem that the model suffers from high computational costs is solved by combining the Fast Multipole Methods (FMM) for an efficient evaluation of the Biot–Savart law with the parallel processing. The model is applied to the aerodynamic analysis of wind turbine and a stable convergent numerical solution is achieved using the pseudo-implicit technique (steady) and predictor-corrector PC2B scheme (unsteady). The optimization based on this analysis is also efficiently carried out using a Fourier series representation of the bound circulation as optimization variables, using a given thrust coefficient as a constraint. The chord and twist distributions that completely define the geometry are produced from the obtained optimal bound circulation distribution. The optimization is capable of quickly finding an optimum design using a few optimization variables. The validations of presented methods are performed through comparisons with the National Renewable Energy Laboratory (NREL) wind turbine experiment.


2018 ◽  
Vol 43 (1) ◽  
pp. 47-63
Author(s):  
Jeanie Aird ◽  
Evan Gaertner ◽  
Matthew Lackner

A prescribed-wake vortex model for evaluating the aerodynamic loads on offshore floating turbines has been developed. As an extension to the existing UMass analysis tool, WInDS, the developed model uses prescribed empirical wake node velocity functions to model aerodynamic loading. This model is applicable to both dynamic flow conditions and dynamic rotational and translational platform motions of floating offshore turbines. With this model, motion-induced wake perturbations can be considered, and their effect on induction can be modeled, which is useful for floating offshore wind turbine design. The prescribed-wake WInDS model is shown to increase computational efficiency drastically in all presented cases and maintain comparable accuracy to the free wake model. Results of prescribed-wake model simulations are presented and compared to results obtained from the free wake model to confirm model validity.


Sign in / Sign up

Export Citation Format

Share Document