Thermal-economic analysis of a heat pipe heat exchanger for energy recovery in air conditioning applications

Author(s):  
S Sanaye ◽  
M R Talaee
2011 ◽  
Vol 32 (4) ◽  
pp. 307-327 ◽  
Author(s):  
YH Yau ◽  
M Ahmadzadehtalatapeh

The effect of heat pipe heat exchanger on the heat recovery was studied in the tropics. The performance of the heat exchanger was monitored during the one week of operation (168 h) to find out the performance characteristic curves. Three coil face velocities namely, 2, 2.2 and 2.5 m/s were tested and the temperature of return air was controlled at 24°C. The relevant empirical equations were then employed for the hour-by-hour prediction of the energy recovery by the heat pipe heat exchanger for the whole year. The impact of inside design temperature on the heat recovery by the heat exchanger was also studied. The thermal performance of the heat pipe heat exchanger was simulated based on the effectiveness-NTU method and the theoretical values were compared with the experimental data. Practical application: Performance improvement of the heating, ventilating and air conditioning systems is a challenge to the designers. The results obtained from this research work could serve as a practical guide for engineers who are intending to use heat pipe heat exchangers in the heating, ventilation and air conditioning systems operating in tropical climates. Engineers and researchers have the potential to use the recommended empirical performance equations to examine the impact of heat pipe heat exchangers on the performance of the current air conditioning systems. Moreover, these empirical performance equations enable the year-round operating effect of heat pipe heat exchangers on energy savings to be predicted realistically.


2021 ◽  
Vol 35 ◽  
pp. 102053
Author(s):  
Gamal B. Abdelaziz ◽  
M.A. Abdelbaky ◽  
M.A. Halim ◽  
M.E. Omara ◽  
I.A. Elkhaldy ◽  
...  

2007 ◽  
Vol 2 (3) ◽  
pp. 86-95
Author(s):  
R. Sudhakaran ◽  
◽  
V. Sella Durai ◽  
T. Kannan ◽  
P.S. Sivasakthievel ◽  
...  

2015 ◽  
Vol 1115 ◽  
pp. 488-493
Author(s):  
Zuraini Mohd Enggsa ◽  
Arfidian Rachman ◽  
Lisa Nesti ◽  
Sohif Mat ◽  
Kamaruzzaman Sopian

This paper reports the development of a novel solar hybrid desiccant cooling system with heat pipe heat exchanger (HPHE). The aim is to achieve higher efficiency to reduce the use of electricity by utilizing the desiccant dehumidification system to remove latent load, while the vapour-compression and heat pipe heat exchanger meet the sensible load. Novelty comes as the heat pipe heat exchanger in the system operates efficiently without external power. Experimental set-up has been built by combining the rotary desiccant wheel, heat pipe heat exchanger with a compressive cooling system. Tests are carried out at typical operative ranges for air-conditioning applications, specifically for high hot and humid locations in Bangi, Malaysia. Acetone is used as refrigerant in the HPHE. Performance of HPHE are tested and proven to have direct impact on Coefficient of performance (COP). The results shows good performance of heat pipe heat exchanger efficiency with average efficiency and capacity of 0.65 and 2kw respectively. It is found that the hybrid system can achieve a higher energy performance in hot humid regions.


2021 ◽  
Author(s):  
Fazri Amir ◽  
Samsul Rizal ◽  
Rudi Kurniawan ◽  
Hamdani Umar ◽  
Razali Thaib

Sign in / Sign up

Export Citation Format

Share Document