Iterative linear matrix inequality algorithms for fault detection with unknown inputs

Author(s):  
H Wang ◽  
J Lam ◽  
S X Ding ◽  
M Zhong

This paper deals with the fault detection problem for linear time-invariant systems with unknown disturbances. Two separate performance indices are presented to facilitate the design of desirable fault detection observers. Iterative linear matrix inequality (LMI) algorithms are proposed in order to design a fault detection observer that aims at enhancing the fault detection and attenuating the effects due to unknown inputs. Numerical examples are employed to demonstrate the effectiveness of the proposed methods.

2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Emmanuel Mazars ◽  
Imad M. Jaimoukha ◽  
Zhenhai Li

This paper considers matrix inequality procedures to address the robust fault detection and isolation (FDI) problem for linear time-invariant systems subject to disturbances, faults, and polytopic or norm-bounded uncertainties. We propose a design procedure for an FDI filter that aims to minimize a weighted combination of the sensitivity of the residual signal to disturbances and modeling errors, and the deviation of the faults to residual dynamics from a fault to residual reference model, using theℋ∞-norm as a measure. A key step in our procedure is the design of an optimal fault reference model. We show that the optimal design requires the solution of a quadratic matrix inequality (QMI) optimization problem. Since the solution of the optimal problem is intractable, we propose a linearization technique to derive a numerically tractable suboptimal design procedure that requires the solution of a linear matrix inequality (LMI) optimization. A jet engine example is employed to demonstrate the effectiveness of the proposed approach.


2020 ◽  
Vol 10 (17) ◽  
pp. 5859
Author(s):  
Josep Rubió-Massegú ◽  
Francisco Palacios-Quiñonero ◽  
Josep M. Rossell ◽  
Hamid Reza Karimi

In vibration control of compound structures, inter-substructure damper (ISSD) systems exploit the out-of-phase response of different substructures to dissipate the kinetic vibrational energy by means of inter-substructure damping links. For seismic protection of multistory buildings, distributed sets of interstory fluid viscous dampers (FVDs) are ISSD systems of particular interest. The connections between distributed FVD systems and decentralized static output-feedback control allow using advanced controller-design methodologies to obtain passive ISSD systems with high-performance characteristics. A major issue of that approach is the computational difficulties associated to the numerical solution of optimization problems with structured bilinear matrix inequality constraints. In this work, we present a novel iterative linear matrix inequality procedure that can be applied to obtain enhanced suboptimal solutions for that kind of optimization problems. To demonstrate the effectiveness of the proposed methodology, we design a system of supplementary interstory FVDs for the seismic protection of a five-story building by synthesizing a decentralized static velocity-feedback H∞ controller. In the performance assessment, we compare the frequency-domain and time-domain responses of the designed FVD system with the behavior of the optimal static state-feedback H∞ controller. The obtained results indicate that the proposed approach allows designing passive ISSD systems that are capable to match the level of performance attained by optimal state-feedback active controllers.


2013 ◽  
Vol 302 ◽  
pp. 759-764 ◽  
Author(s):  
Yue Liu ◽  
Dao Liang Tan ◽  
Bin Wang ◽  
Xi Wang

This paper proposes an eigenstructure assignment method for engine control system diagnosis based on disturbance decoupling, since noisy disturbance has an adverse impact on the performance of aircraft engine fault detection and isolation (FDI). In practice, it is often difficult to solve the eigenstructure assignment method, and the result is far from being satisfactory. In view of this, the paper makes an attempt to deal with the issue by linear matrix inequality (LMI). The advantages of the presented method are as follows: first, it can reduce the effect of exogenous disturbance on fault detection; In the meantime, it will not impair sensitivity to system faults. Experimental results show that the suggested approach performs well on the simulation of an advanced turbofan engine.


Sign in / Sign up

Export Citation Format

Share Document