scholarly journals Component reliability in fault-diagnosis decision making based on dynamic Bayesian networks

Author(s):  
P Weber ◽  
D Theilliol ◽  
C Aubrun
2017 ◽  
Vol 34 (1) ◽  
pp. 163-172 ◽  
Author(s):  
Abdelaziz Lakehal ◽  
Fares Laouacheria

AbstractWater plays an essential role in the everyday lives of the people. To supply subscribers with good quality of water and to ensure continuity of service, the operators use water distribution networks (WDN). The main elements of water distribution network (WDN) are: pipes and valves. The work developed in this paper focuses on a water distribution network rehabilitation in the short and long term. Priorities for rehabilitation actions were defined and the information system consolidated, as well as decision-making. The reliability data were conjugated in decision making tools on water distribution network rehabilitation in a forecasting context. As the pipes are static elements and the valves are dynamic elements, a Bayesian network (static-dynamic) has been developed, which can help to predict the failure scenario regarding water distribution. A relationship between reliability and prioritization of rehabilitation actions has been investigated. Modelling based on a Static Bayesian Network (SBN) is implemented to analyse qualitatively and quantitatively the availability of water in the different segments of the network. Dynamic Bayesian networks (DBN) are then used to assess the valves reliability as function of time, which allows management of water distribution based on water availability assessment in different segments. Before finishing the paper by giving some conclusions, a case study of a network supplying a city was presented. The results show the importance and effectiveness of the proposed Bayesian approach in the anticipatory management and for prioritizing rehabilitation of water distribution networks.


Optik ◽  
2014 ◽  
Vol 125 (10) ◽  
pp. 2243-2247 ◽  
Author(s):  
Rui Yao ◽  
Yanning Zhang ◽  
Yong Zhou ◽  
Shixiong Xia

2015 ◽  
Vol 764-765 ◽  
pp. 1319-1323
Author(s):  
Rong Shue Hsiao ◽  
Ding Bing Lin ◽  
Hsin Piao Lin ◽  
Jin Wang Zhou

Pyroelectric infrared (PIR) sensors can detect the presence of human without the need to carry any device, which are widely used for human presence detection in home/office automation systems in order to improve energy efficiency. However, PIR detection is based on the movement of occupants. For occupancy detection, PIR sensors have inherent limitation when occupants remain relatively still. Multisensor fusion technology takes advantage of redundant, complementary, or more timely information from different modal sensors, which is considered an effective approach for solving the uncertainty and unreliability problems of sensing. In this paper, we proposed a simple multimodal sensor fusion algorithm, which is very suitable to be manipulated by the sensor nodes of wireless sensor networks. The inference algorithm was evaluated for the sensor detection accuracy and compared to the multisensor fusion using dynamic Bayesian networks. The experimental results showed that a detection accuracy of 97% in room occupancy can be achieved. The accuracy of occupancy detection is very close to that of the dynamic Bayesian networks.


Author(s):  
Josquin Foulliaron ◽  
Laurent Bouillaut ◽  
Patrice Aknin ◽  
Anne Barros

The maintenance optimization of complex systems is a key question. One important objective is to be able to anticipate future maintenance actions required to optimize the logistic and future investments. That is why, over the past few years, the predictive maintenance approaches have been an expanding area of research. They rely on the concept of prognosis. Many papers have shown how dynamic Bayesian networks can be relevant to represent multicomponent complex systems and carry out reliability studies. The diagnosis and maintenance group from French institute of science and technology for transport, development and networks (IFSTTAR) developed a model (VirMaLab: Virtual Maintenance Laboratory) based on dynamic Bayesian networks in order to model a multicomponent system with its degradation dynamic and its diagnosis and maintenance processes. Its main purpose is to model a maintenance policy to be able to optimize the maintenance parameters due to the use of dynamic Bayesian networks. A discrete state-space system is considered, periodically observable through a diagnosis process. Such systems are common in railway or road infrastructure fields. This article presents a prognosis algorithm whose purpose is to compute the remaining useful life of the system and update this estimation each time a new diagnosis is available. Then, a representation of this algorithm is given as a dynamic Bayesian network in order to be next integrated into the Virtual Maintenance Laboratory model to include the set of predictive maintenance policies. Inference computation questions on the considered dynamic Bayesian networks will be discussed. Finally, an application on simulated data will be presented.


Sign in / Sign up

Export Citation Format

Share Document