Transient Extinction of Counter flow Diffusion Flame

1982 ◽  
Vol 24 (3) ◽  
pp. 113-117 ◽  
Author(s):  
T. Saitoh ◽  
S. Ishiguro

A transient analysis was performed for extinction of the counter flow diffusion flame utilizing the assumptions of inviscid, incompressible, and laminar stagnation-point boundary layer flows. The unsteadiness was induced via linear time variation of the stagnation point velocity gradient. The physical meaning of the middle solution of the quasi-steady theory was clarified. The effects of acceleration and deceleration of the flow were examined and it was found that strong acceleration tends to support the flame up to a small Damkohler number, which implies that the flame strength becomes large for flames under acceleration.

Author(s):  
D. W. Beard ◽  
K. Walters

AbstractThe Prandtl boundary-layer theory is extended for an idealized elastico-viscous liquid. The boundary-layer equations are solved numerically for the case of two-dimensional flow near a stagnation point. It is shown that the main effect of elasticity is to increase the velocity in the boundary layer and also to increase the stress on the solid boundary.


AIAA Journal ◽  
1968 ◽  
Vol 6 (6) ◽  
pp. 1105-1111 ◽  
Author(s):  
HAROLD MIRELS ◽  
WILLIAM E. WELSH

Sign in / Sign up

Export Citation Format

Share Document