The Use of Velocity Gradient Factor as a Pressure Gradient Parameter

1976 ◽  
Vol 190 (1) ◽  
pp. 277-285 ◽  
Author(s):  
A. Brown ◽  
B.W. Martin

SYNOPSIS This paper traces the evolution of the velocity gradient factor as the most appropriate boundary-layer laminarisation criterion as a prelude to examination of its advantages over the original and modified Pohlhausen parameters for laminar boundary-layer situations involving positive and negative pressure gradients. The velocity gradient factor, which involves only directly-measurable quantities, appears a more sensitive indicator of changes in other parameters over a wide range of flow models, including the onset of transition in the presence of significant mainstream turbulence.

1967 ◽  
Vol 27 (3) ◽  
pp. 541-549 ◽  
Author(s):  
H. J. Herring ◽  
J. F. Norbury

A wind tunnel in which an arbitrary negative pressure gradient could be developed has been built for boundary-layer studies. The effects of selected pressure gradients on boundary layers grown on one of the walls of the tunnel were studied. It was possible to obtain equilibrium boundary layers of the type first suggested by Clauser: that is, layers whose non-dimensional velocity-defect distribution is invariant along the direction of flow. The velocity-defect distributions for two such boundary layers were established, corresponding to values of Clauser's dimensionless pressure-gradient parameter β of −0·35 and −0·53. These velocity profiles are compared with the profiles predicted theoretically by Mellor & Gibson (1966). The agreement between the two is very good.


1964 ◽  
Vol 15 (4) ◽  
pp. 392-406 ◽  
Author(s):  
A. D. Young

SummaryThe analytic simplifications in boundary-layer analysis that result from the assumptions that the Prandtl number σ and the viscosity-temperature index ω are unity make it desirable to be able to assess the effects of the departures of the actual values of these parameters from unity. In this paper only the effects on skin friction are considered. Formulae of acceptable validity and wide application are first used to produce generalised curves for these effects for given main-stream Mach numbers and wall temperature conditions for the case of zero external pressure gradient for both laminar and turbulent boundary layers (Figs. 1 and 2).A number of calculated results for the laminar boundary layer with favourable and adverse pressure gradients is then analysed (Figs. 3, 4 and 5) and it is shown that these results are consistent with the assumption that, for a given wall temperature, the effects of small changes of σ and ω on skin friction are independent of the external gradient, so that the appropriate curves of Figs. 1 and 2 apply. Where the change of a- is associated with a change of wall temperature (e.g. if the heat transfer is specified as zero) then the interaction between pressure gradient and this temperature change can be significant in its effects on skin friction for the laminar boundary layer and can only be assessed if the effects of changes of wall temperature with constant σ and ω have been separately determined for the pressure distribution considered. It is inferred that in all cases, except with large adverse pressure gradients and imminent separation, the effects of changes of ω and σ for the turbulent boundary layer are reliably predicted by the zero pressure gradient curves of Figs. 1 and 2 and the effect of any associated change of wall temperature can then be reliably inferred from the zero pressure gradient formula (equation (15)) in the absence of more specific calculations covering a range of wall temperatures.


2008 ◽  
Vol 615 ◽  
pp. 445-475 ◽  
Author(s):  
SHIVSAI AJIT DIXIT ◽  
O. N. RAMESH

Experiments were done on sink flow turbulent boundary layers over a wide range of streamwise pressure gradients in order to investigate the effects on the mean velocity profiles. Measurements revealed the existence of non-universal logarithmic laws, in both inner and defect coordinates, even when the mean velocity descriptions departed strongly from the universal logarithmic law (with universal values of the Kármán constant and the inner law intercept). Systematic dependences of slope and intercepts for inner and outer logarithmic laws on the strength of the pressure gradient were observed. A theory based on the method of matched asymptotic expansions was developed in order to explain the experimentally observed variations of log-law constants with the non-dimensional pressure gradient parameter (Δp=(ν/ρU3τ)dp/dx). Towards this end, the system of partial differential equations governing the mean flow was reduced to inner and outer ordinary differential equations in self-preserving form, valid for sink flow conditions. Asymptotic matching of the inner and outer mean velocity expansions, extended to higher orders, clearly revealed the dependence of slope and intercepts on pressure gradient in the logarithmic laws.


1971 ◽  
Vol 93 (4) ◽  
pp. 373-379 ◽  
Author(s):  
H. L. Julien ◽  
W. M. Kays ◽  
R. J. Moffat

Mean velocity-profile data are reported for blown, unblown, and sucked accelerated turbulent boundary layers. The pressure gradients investigated are those corresponding to constant values of the pressure-gradient parameter K=νU∞2dU∞dx The two values of K considered in detail are 0.57 × 10−6 and 1.45 × 10−6. For each pressure gradient, the surface boundary conditions cover a range of constant blowing and sucking fractions from F = −0.002 to +0.004. Velocity profiles corresponding to these accelerated flows are shown to differ substantially from those characteristic of zero-pressure-gradient flows. For each case of a constant K acceleration, sequential values of the momentum-thickness Reynolds number approach a specific constant, and the velocity distributions near the wall are similar in both wall coordinates and outer coordinates. Results obtained here can be reproduced by a numerical integration of the boundary-layer equations using a modification of the van Driest damping factor, A+, derived from the data presented here. The A+ correlation is presented.


2011 ◽  
Vol 301 (1) ◽  
pp. H48-H60 ◽  
Author(s):  
Michael J. Davis ◽  
Elaheh Rahbar ◽  
Anatoliy A. Gashev ◽  
David C. Zawieja ◽  
James E. Moore

Secondary lymphatic valves are essential for minimizing backflow of lymph and are presumed to gate passively according to the instantaneous trans-valve pressure gradient. We hypothesized that valve gating is also modulated by vessel distention, which could alter leaflet stiffness and coaptation. To test this hypothesis, we devised protocols to measure the small pressure gradients required to open or close lymphatic valves and determine if the gradients varied as a function of vessel diameter. Lymphatic vessels were isolated from rat mesentery, cannulated, and pressurized using a servo-control system. Detection of valve leaflet position simultaneously with diameter and intraluminal pressure changes in two-valve segments revealed the detailed temporal relationships between these parameters during the lymphatic contraction cycle. The timing of valve movements was similar to that of cardiac valves, but only when lymphatic vessel afterload was elevated. The pressure gradients required to open or close a valve were determined in one-valve segments during slow, ramp-wise pressure elevation, either from the input or output side of the valve. Tests were conducted over a wide range of baseline pressures (and thus diameters) in passive vessels as well as in vessels with two levels of imposed tone. Surprisingly, the pressure gradient required for valve closure varied >20-fold (0.1–2.2 cmH2O) as a passive vessel progressively distended. Similarly, the pressure gradient required for valve opening varied sixfold with vessel distention. Finally, our functional evidence supports the concept that lymphatic muscle tone exerts an indirect effect on valve gating.


Author(s):  
H. Perez-Blanco ◽  
Robert Van Dyken ◽  
Aaron Byerley ◽  
Tom McLaughlin

Separation bubbles in high-camber blades under part-load conditions have been addressed via continuous and pulsed jets, and also via plasma actuators. Numerous passive techniques have been employed as well. In this type of blades, the laminar boundary layer cannot overcome the adverse pressure gradient arising along the suction side, resulting on a separation bubble. When separation is abated, a common explanation is that kinetic energy added to the laminar boundary layer speeds up its transition to turbulent. In the present study, a plasma actuator installed in the trailing edge (i.e. “wake filling configuration”) of a cascade blade is used to excite the flow in pulsed and continuous ways. The pulsed excitation can be directed to the frequencies of the large coherent structures (LCS) of the flow, as obtained via a hot-film anemometer, or to much higher frequencies present in the suction-side boundary layer, as given in the literature. It is found that pulsed frequencies much higher than that of LCS reduce losses and improve turning angles further than frequencies close to those of LCS. With the plasma actuator 50% on time, good loss abatement is obtained. Larger “on time” values yield improvements, but with decreasing returns. Continuous high-frequency activation results in the largest loss reduction, at increased power cost. The effectiveness of high frequencies may be due to separation abatement via boundary layer excitation into transition, or may simply be due to the creation of a favorable pressure gradient that averts separation as the actuator ejects fluid downstream. Both possibilities are discussed in light of the experimental evidence.


Author(s):  
Frank J. Aldrich

A physics-based approach is employed and a new prediction tool is developed to predict the wavevector-frequency spectrum of the turbulent boundary layer wall pressure fluctuations for subsonic airfoils under the influence of adverse pressure gradients. The prediction tool uses an explicit relationship developed by D. M. Chase, which is based on a fit to zero pressure gradient data. The tool takes into account the boundary layer edge velocity distribution and geometry of the airfoil, including the blade chord and thickness. Comparison to experimental adverse pressure gradient data shows a need for an update to the modeling constants of the Chase model. To optimize the correlation between the predicted turbulent boundary layer wall pressure spectrum and the experimental data, an optimization code (iSIGHT) is employed. This optimization module is used to minimize the absolute value of the difference (in dB) between the predicted values and those measured across the analysis frequency range. An optimized set of modeling constants is derived that provides reasonable agreement with the measurements.


Author(s):  
Jeffrey P. Bons ◽  
Stephen T. McClain

Experimental measurements of heat transfer (St) are reported for low speed flow over scaled turbine roughness models at three different freestream pressure gradients: adverse, zero (nominally), and favorable. The roughness models were scaled from surface measurements taken on actual, in-service land-based turbine hardware and include samples of fuel deposits, TBC spallation, erosion, and pitting as well as a smooth control surface. All St measurements were made in a developing turbulent boundary layer at the same value of Reynolds number (Rex≅900,000). An integral boundary layer method used to estimate cf for the smooth wall cases allowed the calculation of the Reynolds analogy (2St/cf). Results indicate that for a smooth wall, Reynolds analogy varies appreciably with pressure gradient. Smooth surface heat transfer is considerably less sensitive to pressure gradients than skin friction. For the rough surfaces with adverse pressure gradient, St is less sensitive to roughness than with zero or favorable pressure gradient. Roughness-induced Stanton number increases at zero pressure gradient range from 16–44% (depending on roughness type), while increases with adverse pressure gradient are 7% less on average for the same roughness type. Hot-wire measurements show a corresponding drop in roughness-induced momentum deficit and streamwise turbulent kinetic energy generation in the adverse pressure gradient boundary layer compared with the other pressure gradient conditions. The combined effects of roughness and pressure gradient are different than their individual effects added together. Specifically, for adverse pressure gradient the combined effect on heat transfer is 9% less than that estimated by adding their separate effects. For favorable pressure gradient, the additive estimate is 6% lower than the result with combined effects. Identical measurements on a “simulated” roughness surface composed of cones in an ordered array show a behavior unlike that of the scaled “real” roughness models. St calculations made using a discrete-element roughness model show promising agreement with the experimental data. Predictions and data combine to underline the importance of accounting for pressure gradient and surface roughness effects simultaneously rather than independently for accurate performance calculations in turbines.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ramesh B. Kudenatti ◽  
Shreenivas R. Kirsur ◽  
Achala L. Nargund ◽  
N. M. Bujurke

The two-dimensional magnetohydrodynamic flow of a viscous fluid over a constant wedge immersed in a porous medium is studied. The flow is induced by suction/injection and also by the mainstream flow that is assumed to vary in a power-law manner with coordinate distance along the boundary. The governing nonlinear boundary layer equations have been transformed into a third-order nonlinear Falkner-Skan equation through similarity transformations. This equation has been solved analytically for a wide range of parameters involved in the study. Various results for the dimensionless velocity profiles and skin frictions are discussed for the pressure gradient parameter, Hartmann number, permeability parameter, and suction/injection. A far-field asymptotic solution is also obtained which has revealed oscillatory velocity profiles when the flow has an adverse pressure gradient. The results show that, for the positive pressure gradient and mass transfer parameters, the thickness of the boundary layer becomes thin and the flow is directed entirely towards the wedge surface whereas for negative values the solutions have very different characters. Also it is found that MHD effects on the boundary layer are exactly the same as the porous medium in which both reduce the boundary layer thickness.


Sign in / Sign up

Export Citation Format

Share Document