Effect of Vapour Drag on Laminar Film Condensation on a Vertical Rectangular Fin

Author(s):  
H Kazeminejad

A simple theory is presented for laminar film condensation of a pure vapour on a vertical rectangular fin which takes account of drag induced on the liquid film by the flow of the condensing vapour. Under these conditions, the governing conjugate differential equations for the fin and condensate flow are solved numerically to determine the fin temperature and condensate film thickness distributions. For the range of parameters investigated, it was found that the reduction in condensate thermal resistance due to vapour shear significantly enhances the heat-transfer rate to the fin and decreases the fin efficiency. The model also provides a clear picture of the relative effect of the gravity force, friction drag and momentum drag on the performance of the fin.

2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Hua Sheng Wang ◽  
John W. Rose

A relatively simple theory of annular laminar film condensation in microchannels, based on the Nusselt approximations for the condensate film and a theoretically based approximation for the vapor shear stress, has no empirical input and gives the local heat transfer coefficient and local quality for given vapor mass flux and vapor–surface temperature difference distribution along the channel. As well as streamwise vapor shear stress and gravity, the theory includes transverse (to the flow direction) surface tension-driven motion of the condensate film and gives a differential equation for the local (transverse and streamwise) condensate film thickness. As well as four transverse direction boundary conditions due to condensate surface curvature, a streamwise boundary condition is required as in the Nusselt theory. When the vapor is saturated or superheated at inlet, this is provided by the fact that the film thickness is zero around the channel perimeter at the position of onset on condensation. Most experimental investigations have been conducted with quality less than one at inlet and only approximate comparisons, discussed in earlier papers, can be made. The present paper is devoted to comparisons between theory and measurements in investigations where local heat flux and channel surface temperature were measured and the vapor at inlet was superheated. Measured and calculated heat transfer coefficients and their dependence on distance along the channel and on local quality are in surprisingly good agreement and suggest that the mode of condensation is, in fact, annular and laminar, at least where the quality is high.


1961 ◽  
Vol 83 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Michael Ming Chen

The boundary-layer equations for laminar film condensation are solved for (a) a single horizontal tube, and (b) a vertical bank of horizontal tubes. For the single-tube case, the inertia effects are included and the vapor is assumed to be stationary outside the vapor boundary layer. Velocity and temperature profiles are obtained for the case μvρv/μρ ≪ 1 and similarity is found to exist exactly near the top stagnation point, and approximately for the most part of the tube. Heat-transfer results computed with these similar profiles are presented and discussed. For the multiple-tube case, the analysis includes the effect of condensation between tubes, which is shown to be partly responsible for the high observed heat-transfer rate for vertical tube banks. The inertia effects are neglected due to the insufficiency of boundary-layer theory in this case. Heat-transfer coefficients are presented and compared with experiments. The theoretical results for both cases are also presented in approximate formulas for ease of application.


2021 ◽  
Author(s):  
Vijay K. Dhir

Abstract In this contribution in honor of Late Prof. E. M. Sparrow, we reflect on the pioneering work of Sparrow and Gregg on the development of similarity solutions for laminar film condensation on a vertical plate. Dhir and Lienhard using this work as a basis developed a generalized solution for isothermal curved surfaces on which gravitational acceleration varied along the surface and for variable gravity situations. Subsequently non-isothermal surfaces were also considered. These studies were publisher earlier in the J. Heat Transfer.


Sign in / Sign up

Export Citation Format

Share Document