Sliding Friction Analysis of Phosphatidylcholine as a Boundary Lubricant for Articular Cartilage

Author(s):  
P F Williams ◽  
G L Powell ◽  
M LaBerge

Dipalmitoyl phosphatidylcholine (DPPC), the major lipidic component of the synovial fluid (45 per cent), has been implicated in previous studies in synovial joint lubrication as a potential boundary lubricant for articular cartilage. The purpose of this study was to evaluate the effectiveness of DPPC as a boundary lubricant at physiological stresses experienced by weight-bearing joints (up to 7.5 MPa). The sliding coefficients of static and kinetic friction for glass surfaces coated with DPPC layers of physiological thickness (70 nm) were measured as a function of average contact stress, contact geometry (point and line), applied load and relative velocity (from 25 to 0 mm/s) and compared to the coefficient of friction for clean glass in the same conditions. The coefficient of friction for DPPC-lubricated surfaces was dependent on contact geometry, obeyed Amonton's law (not dependent on axial load or contact area), was dependent on relative velocity within the range stated and was an effective lubricant at physiological stresses. This study showed that dipalmitoyl phosphatidylcholine can be an effective boundary lubricant at stresses observed in load-bearing joints. Because of their surface-active nature, these adsorbed molecules might also act as a protective layer for the articular surfaces.

Author(s):  
K. Miyoshi ◽  
K. W. Street ◽  
R. L. Vander Wal ◽  
R. Andrews ◽  
David Jacques ◽  
...  

To evaluate recently developed aligned multiwalled carbon nanotubes (MWNTs) and dispersed MWNTs for solid lubrication applications, unidirectional sliding friction experiments were conducted with 440C stainless steel balls and hemispherical alumina-yttria stabilized zirconia pins in sliding contact with the MWNTs deposited on quartz disks in air and in vacuum. The results indicate that MWNTs have superior solid lubrication friction properties and endurance lives in air and vacuum under dry conditions. The coefficient of friction of the dispersed MWNTs is close to 0.05 and 0.009 in air and in vacuum, respectively, showing good dry lubricating ability. The wear life of MWNTs exceeds 1 million passes in both air and vacuum showing good durability. In general, the low coefficient of friction can be attributed to the combination of the transferred, agglomerated patches of MWNTs on the counterpart ball or pin surfaces and the presence of tubular MWNTs at interfaces.


Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 448 ◽  
Author(s):  
Jichun Xing ◽  
Huajun Li ◽  
Dechun Liu

Tactile feedback technology has important development prospects in interactive technology. In order to enrich the tactile sense of haptic devices under simple control, a piezoelectric haptic feedback device is proposed. The piezoelectric tactile feedback device can realize tactile changes in different excitation voltage amplitudes, different excitation frequencies, and different directions through the ciliary body structure. The principle of the anisotropic vibration of the ciliary body structure was analyzed here, and a tactile model was established. The equivalent friction coefficient under full-coverage and local-coverage of the skin of the touch beam was deduced and solved. The effect of system parameters on the friction coefficient was analyzed. The results showed that in the full-coverage, the tactile effect is mainly affected by the proportion of the same directional ciliary bodies and the excitation frequency. The larger the proportion of the same direction ciliary body is, the smaller the coefficient of friction is. The larger the excitation frequency is, the greater the coefficient of friction is. In the local-coverage, the tactile effect is mainly affected by the touch position and voltage amplitude. When changing the touch pressure, it has a certain effect on the change of touch, but it is relatively weak. The experiment on the sliding friction of a cantilever touch beam and the experiment of human factor were conducted. The experimental results of the sliding friction experiment are basically consistent with the theoretical calculations. In the human factor experiment, the effects of haptic regulation are mainly affected by voltage or structure of the ciliary bodies.


The friction behaviour of iron and Fe-Cr alloys in unidirectional and reciprocating sliding motions at 293 K has been examined in oxygen of controlled partial pressure. During sliding, a progressive decrease in coefficient of friction accompanies the development of compacted oxide films on the metal surfaces, eventually resulting in a steady value of about 0.6 when almost complete oxide coverage is attained. This is achieved more rapidly at higher oxygen partial pressures. A model to account for the experimental observations is proposed, based on the growth of oxide on the clean metal surfaces and metal wear particles between each wear traversal and the removal of that oxide during the subsequent traversal. The oxidized debris is fragmented further and compacted on to the metal surfaces to form a layer of nominally constant thickness, the area of which increases progressively with the number of sliding traversals. The model relates the coefficient of friction to the area of compacted oxide in terms of several interfacial metal, oxide and metal-oxide parameters. The importance of some of these parameters on the frictional behaviour is discussed in light of the experimental observations.


Several papers have been published recently which show for a number of metals that, under certain experimental conditions, several molecular layers of boundary lubricant are necessary to give effective lubrication, i.e. a coefficient of friction of 0.1 or less. Recent experiments by the authors suggest that these results represent parts of a more general pattern. In the previous work, the experiments were carried out at a fixed load; in the present, the load has been varied. The apparatus used was a copy of that described by Bowden & Leben (1939) for studying friction at low speeds of sliding. A hemispherical copper slider of radius 0-45 cm was caused to slide upon a flat copper plate at a speed of approximately 1 cm/min. Several specimens were used; their average hardness was 100 v .p .h .


1958 ◽  
Vol 36 (5) ◽  
pp. 599-610 ◽  
Author(s):  
C. D. Niven

The friction on ice of some small inflated rubber tires was measured on a turntable in a cold room. When rolling-friction force was plotted against load, the relation was either linear or slightly curved away from the load axis; such curvature implies that Thirion's Law does not hold for rolling friction. On the other hand when sliding-friction force was plotted against load the curvature was toward the load axis as would be expected if Thirion's Law applied. The coefficient of friction can go as low as 0.01 or even lower for a hard-pumped tire when the temperature is near 0 °C, but at −1 °C. rolling friction on dry ice is quite appreciable. The results refer only to measurements at very slow speed.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Subhrojyoti Mazumder ◽  
Om Prakash Kumar ◽  
Dinesh Kumar Kotnees ◽  
Nilrudra Mandal

The aim of the study was to investigate the friction and wear phenomena of 3 mol % yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) ceramics with the inclusion of copper oxide (CuO) in large area conformal contact geometry. The pin-on-disk tribometer was used to conduct the dry sliding test using CuO/3Y-TZP as pin and alumina as counter surface. The coefficient of friction (μ) for CuO-added 3Y-TZP was decreased by ∼38% compared to pure 3Y-TZP due to formation of protective tribo film to the substrate. In addition, the experiments also showed that the specific wear rate (k) was reduced by ∼54% with the inclusion of CuO in to 3Y-TZP matrix. The different phases of the zirconia, copper, and yttria as well as the phase transformation before and after sliding test were identified by X-ray diffraction (XRD) analysis. Field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDS) analysis revealed the existence of CuO in the patchy layers in the worn-out surface of the tested CuO/3Y-TZP sample leading to lower coefficient of friction and improve the wear resistance against alumina counterface in conformal contact geometry. Severe wear mechanism was the dominating factor due to the local plastic deformation of the large number of asperities since the pair of contact was conformal.


1999 ◽  
Vol 121 (2) ◽  
pp. 282-285 ◽  
Author(s):  
D. P. Hess

The influence of harmonic normal loads on sliding friction is investigated through analysis of contacts consisting of conical and spherical sliders of hard materials on softer metal surfaces. Friction for such contacts is assumed to result from a plowing component and a shearing component. Calculations and experiments show that the coefficient of friction is essentially independent of normal load for contacts with conical sliders. However, for spherical sliders the relation between the coefficient of friction and normal load is highly nonlinear. In the presence of harmonic variations in normal load, this non-linearity causes a shift in the average coefficient of friction. For ideal lubricated contacts, the shearing component of friction is very small and for this case, it is shown that the maximum average reduction in the coefficient of friction is ten percent. When the shearing component is more significant, as with dry contacts, the shift is less. For example, when the shear strength is one-sixth the hardness of the softer material, the maximum average reduction in the coefficient of friction is five percent.


This paper describes a study of the friction and metallic transfer between sliding metal surfaces in the absence and in the presence of boundary lubricant films. One surface is made radioactive and is slid over the surface of a second, non-radioactive metal, the amount of metal transferred being detected by the blackening of a photographic plate placed in contact with the second surface. The results show that, in general, the metallic transfer or ‘pick-u p ’, consists of a relatively small number of discrete particles. For unlubricated surfaces the pick-up is about 40 times larger for similar than for dissimilar metals, although the coefficient of friction covers a relatively small range (μ ≈ 0.4 to μ ≈ 1). With well-lubricated surfaces the friction is reduced by a factor of not more than 20 (μ ≈0.05), whilst the ‘pick-u p ’ may be diminished by a factor of 20,000 or more. A simple analysis suggests that under these conditions the welded metallic junctions formed through the lubricant film play a very small part in determining the frictional resistance to motion. Consequently two lubricants possessing widely differing abilities to protect the surfaces may give essentially the same coefficient of friction. The lowest friction and ‘pick-up ’ are observed when the lubricant film is solid. As the temperature is raised a marked increase in friction and ‘pick -u p ’ occurs a t a temperature close to the melting-point of the film. A new observation is that at a somewhat higher temperature a further deterioration in lubricating properties occurs; although the surfaces are visibly covered with lubricant, the frictional behaviour and the metallic transfer are similar to those observed with unlubricated surfaces. These changes are reversible on cooling, and it is suggested that they correspond to changes in state of the lubricant film. The results provide direct support for the view that the friction between metals is due largely to the formation and shearing of metallic junctions, and that the main function of a boundary lubricant is to reduce the amount of metallic interaction. The investigation also shows that the metallic transfer is immensely more sensitive to changes in surface conditions than is the coefficient of friction.


2020 ◽  
pp. 401-407
Author(s):  
E.A. Marchenko ◽  
M.M. Khrushchov ◽  
S.M. Kaplunov ◽  
V.A. Panov

Trobological characteristics of sliding friction in stainless steel and titanium alloys in dry and water lubricated conditions have been determined. The character of the coefficient of friction variation with load and the duration of tests have confi rmed the prevailing wear mechanism in these materials to be frictional fatigue fracture that in the case of titanium alloys is accompanied with adhesive interaction and plastic plowing. The frictional fatigue curves built in a result of this investigation make possible to estimate the materials tribological longevity.


2020 ◽  
pp. 331-336
Author(s):  
А.V. Shchedrin ◽  
А.А. Bekaev ◽  
N.Yu. Chikhacheva

The influence of the nature and parameters microgeometry of the surface layer tool on the sliding friction coeffi cient in the combined methods opening under the conditions of using metal-coating lubricants, which implement the effect of wear-free friction of Garkunov—Kragelsky, is studied comparatively using the theoretical provisions of the adhesivedeformation theory of friction


Sign in / Sign up

Export Citation Format

Share Document