scholarly journals Photochemical Reactions of Uranyl Ions with Organic Compounds. I. The Mechanism of the Uranyl Ion-Photosensitized Oxidation of Lactic Acid

1970 ◽  
Vol 43 (7) ◽  
pp. 1950-1955 ◽  
Author(s):  
Shukichi Sakuraba ◽  
Ryoka Matsushima
1993 ◽  
Vol 58 (8) ◽  
pp. 1813-1820 ◽  
Author(s):  
Jan Vácha ◽  
Lumír Sommer

The sorption of uranyl ions on columns with the macrophorus hydrophobic sorbent Amberlite XAD 4 modified with 1-(2-pyridylazo)-2-naphthol and sodium diethyldithiocarbamate was examined. Following elution of the uranyl ion with HNO3 (2 - 4 mol l-1) or of the diethyldithiocarbamate UO22+-chelate with a methanolic solution of HCl (0.1 mol l-1), uranium was determined spectrophotometrically with 4-(2-pyridylazo)resorcinol or with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol. The preconcentration of uranium on Amberlite XAD 4 type sorbents is convenient for its spectrophotometric determination in waters.


2021 ◽  
Vol 18 ◽  
Author(s):  
Aparna Das

: In recent years, photocatalytic technology has shown great potential as a low-cost, environmentally friendly, and sustainable technology. Compared to other light sources in photochemical reaction, LEDs have advantages in terms of efficiency, power, compatibility, and environmentally-friendly nature. This review highlights the most recent advances in LED-induced photochemical reactions. The effect of white and blue LEDs in reactions such as oxidation, reduction, cycloaddition, isomerization, and sensitization is discussed in detail. No other reviews have been published on the importance of white and blue LED sources in the photocatalysis of organic compounds. Considering all the facts, this review is highly significant and timely.


2019 ◽  
Author(s):  
Nicolás Zabalegui ◽  
Malena Manzi ◽  
Antoine Depoorter ◽  
Nathalie Hayeck ◽  
Marie Roveretto ◽  
...  

Abstract. A transmission mode-direct analysis in real time-quadrupole time of flight-mass spectrometry (TM-DART-QTOF-MS)-based analytical method coupled to multivariate statistical analysis was developed to interrogate lipophilic compounds in seawater samples without the need of desalinization. An untargeted metabolomics approach addressed here as seaomics was successfully implemented to discriminate sea surface microlayer (SML) from underlying water (ULW) samples (n = 22, 10 paired samples) collected during a field campaign at the Cape Verde islands in September–October 2017. A panel of 11 ionic species detected in all samples allowed sample class discrimination by means of supervised multivariate statistical models. Tentative identification of these species suggest that saturated fatty acids, peptides, fatty alcohols, halogenated compounds, and oxygenated boron-containing organic compounds may be involved in water-air transfer processes and in photochemical reactions at the water-air interface of the ocean. A subset of SML samples (n = 5) were subject to on-site experiments during the campaign using a lab-to-the-field approach to test their secondary organic aerosol (SOA) formation potency. Results from these experiments and the analytical seaomics strategy provide a proof of concept that organic compounds play a key role in aerosol formation processes at the water/air interface.


1999 ◽  
Vol 49 (S1) ◽  
pp. 783-787 ◽  
Author(s):  
S. Tsushima ◽  
S. Nagasaki ◽  
S. Tanaka ◽  
A. Suzuki

Sign in / Sign up

Export Citation Format

Share Document