scholarly journals Long-range Transport of Saharan Dust Over the North Atlantic Ocean and Estimation of Its Transport Amount.

1992 ◽  
pp. 627-632
Author(s):  
Shigeru TANAKA ◽  
Osamu MASUKO ◽  
Yoshikazu HASHIMOTO
2021 ◽  
Author(s):  
Leonie Villiger ◽  
Heini Wernli ◽  
Maxi Boettcher ◽  
Martin Hagen ◽  
Franziska Aemisegger

Abstract. Shallow clouds in the trade-wind region over the North Atlantic contribute substantially to the global radiative budget. In the vicinity of the Caribbean island Barbados, they appear in different mesoscale organisation patterns with distinct net cloud radiative effects (CRE). Cloud formation processes in this region are typically controlled by the prevailing large-scale subsidence. However, occasionally weather systems from remote origin cause significant disturbances. This study investigates the complex cloud-circulation interactions during the field campaign EUREC4A (Elucidate the Couplings Between Clouds, Convection and Circulation) from 16 January to 20 February 2020, using a combination of Eulerian and Lagrangian diagnostics. Based on observations and ERA5 reanalyses, we identify the relevant processes and characterise the formation pathways of two moist anomalies above the Barbados Cloud Observatory (BCO), one in the lower (~1000–650 hPa) and one in the middle troposphere (~650–300 hPa). These moist anomalies are associated with strongly negative CRE values and with contrasting long-range transport processes from the extratropics and the tropics, respectively. The low-level moist anomaly is characterised by an unusually thick cloud layer, high precipitation totals and a strongly negative CRE. Its formation is connected to an “extratropical dry intrusion” (EDI) that interacts with a trailing cold front. A quasi-climatological (2010–2020) analysis reveals that EDIs lead to different conditions at the BCO depending on how they interact with the associated cold front. Based on this climatology, we discuss the relevance of the strong large-scale forcing by EDIs for the low-cloud patterns near the BCO and the related CRE. The second case study about the mid-tropospheric moist anomaly is associated with an extended and persistent mixed-phase shelf cloud and the lowest daily CRE value observed during the campaign. Its formation is linked to “tropical mid-level detrainment” (TMD), which refers to detrainment from tropical deep convection near the melting layer. The quasi-climatological analysis shows that TMDs consistently lead to mid-tropospheric moist anomalies over the BCO and that the detrainment height controls the magnitude of the anomaly. However, no systematic relationship was found between the amplitude of this mid-tropospheric moist anomaly and the CRE at the BCO. Overall, this study reveals the important impact of the long-range transport, driven by dynamical processes either in the extratropics or the tropics, on the variability of the vertical structure of moisture and clouds, and on the resulting CRE in the North Atlantic winter trades.


2022 ◽  
Vol 48 (1) ◽  
pp. 3-8
Author(s):  
Keith D. Mullin ◽  
Lisa Steiner ◽  
Charlotte Dunn ◽  
Diane Claridge ◽  
Laura González García ◽  
...  

2004 ◽  
Vol 4 (4) ◽  
pp. 4407-4454 ◽  
Author(s):  
S. A. Penkett ◽  
M. J. Evans ◽  
C. E. Reeves ◽  
K. S. Law ◽  
P. S. Monks ◽  
...  

Abstract. This paper presents strong experimental evidence for a major perturbation in ozone concentrations over large parts of the North Atlantic Ocean from the surface to 8 km associated with continental pollutants. The evidence was gathered in the course of 7 flights by the UK Meteorological Office C-130 aircraft based on the Azores, and 4 ferry flights between the UK to the Azores in spring and summer 1997 as a component of the NERC-funded ACSOE project. The total latitude range covered was approximately 55°N–25°N, and the longitude range was approximately 0° to 40°W. Many profiles were made between the sea surface and altitudes up to 9 km to survey the composition of the marine atmosphere. The C-130 aircraft was comprehensively equipped to measure many chemical and physical parameters along with standard meteorological instrumentation. Thus it was able to measure ozone and speciated NOy, along with tracers including water vapour, carbon monoxide and condensation nuclei, in near real time. The overall "picture" of the troposphere over large parts of the North Atlantic is of layers of pollution from the continents of different ages interspersed with layers of air uplifted from the marine boundary layer. The lowest ozone concentrations were recorded in the marine boundary layer where there is evidence for extensive ozone destruction in summer. Flights were made to penetrate the outflow of hurricane Erica, to determine the southerly extent of polluted air in summer, to examine the impact of frontal systems on the composition of remote marine air, and to trace long-range pollution from the west coast of the USA interspersed with air with a stratospheric origin. In one of the spring flights it is possible that a plume of polluted air with high ozone and NOy, and with an origin in southeast Asia, was intercepted off the coast of Portugal. The concentrations of NOx, in this plume were sufficient for ozone formation to be continuing along its track from west to east. The instrument to measure NOy almost certainly was only measuring the sum of organic nitrates (mostly in the form of PAN) plus NOx. The high correlation between NOy and ozone under these conditions strongly suggests a non-stratospheric source for most of the ozone encountered over large parts of the atmosphere upwind of Europe. There was a marked seasonal variation in the NOy with about twice as much present in the spring flights than in the summer flights. The overall ozone levels in both spring and summer were somewhat similar although the highest ozone concentration encountered (~100 ppbv) was observed in summer in some polluted layers in mid Atlantic with an origin in the boundary layer over the southeastern USA. The bulk of the pollutants, ozone, CO, and NOy, were in the free troposphere at altitudes between 3 and 8 km. The only instances of pollution at lower levels were in the form of ship plumes, which were encountered several times. The data therefore strongly support the need for more in-situ aircraft experiments to quantify and understand the phenomenon of long-range transport of pollution from continent to continent. Observations at ground-based stations are inadequate for this purpose and satellite data is incomplete both in terms of its altitude detail and in the extent of chemical speciation, particularly for ascertaining whether chemical production and destruction processes for ozone are occurring.


Sign in / Sign up

Export Citation Format

Share Document