fire plumes
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 27)

H-INDEX

30
(FIVE YEARS 3)

2021 ◽  
pp. 103477
Author(s):  
Yaning Sun ◽  
Naian Liu ◽  
Wei Gao ◽  
Xiaodong Xie ◽  
Linhe Zhang

Author(s):  
Ryan N. Leach ◽  
Chris V. Gibson

Fire meteorologists have few tools for assessing atmospheric stability in the context of wildfires. Most tools at our disposal were developed for assessing thunderstorms and general convection, and so they ignore heat and moisture supplied by the wildfire. We propose a simple parcel-based model that can be used to assess how the atmosphere will affect a growing wildfire plume by also taking into account the heat and moisture released from the fire. From this model, we can infer trends in day to day atmospheric stability as it relates to fire plumes. We can also infer how significant the appearance of a pyrocumulus cloud on the top of a fire column is. In some cases, the appearance of a pyrocumulus indicates that the fire is near if not already blowing up, whereas in other cases environmental conditions remain too stable to have a significant effect. A qualitative application of the model is demonstrated through application to a 2017 wildfire case in Western Montana.


2021 ◽  
Author(s):  
Jaakko Kukkonen ◽  
Juha Nikmo ◽  
Kari Riikonen ◽  
Ilmo Westerholm ◽  
Pekko Ilvessalo ◽  
...  

Abstract. A mathematical model called BUOYANT has previously been developed for the evaluation of the dispersion of positively buoyant plumes originating from major warehouse fires. The model addresses the variations of the cross-plume integrated properties of a rising plume in a vertically varying atmosphere and the atmospheric dispersion after the plume rise regime. We have described in this article an extension of the BUOYANT model to include a detailed treatment of the early evolution of the fire plumes, before the plume rise and atmospheric dispersion regimes. The model input and output consist of selected characteristics of forest or pool fires, and the properties of a source term for the plume rise module, respectively. The main model structure of this source term model is based on the differential equations for low-momentum releases of buoyant material, which govern the evolution of the plume radius, velocity and density differences. The model is also partially based on various experimental results on fire plumes. We have evaluated the refined BUOYANT model by comparing the model predictions against the experimental field-scale data of the Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment, RxCADRE. The predicted concentrations of CO2 agreed fairly well with the aircraft measurements conducted in the RxCADRE campaign. We have also compiled an operational version of the model. The operational model can be used for emergency contingency planning and for the training of emergency personnel, in case of major forest and pool fires.


2021 ◽  
Vol 148 ◽  
pp. 737-750
Author(s):  
Kai Ye ◽  
Xiao Tang ◽  
Yuan Zheng ◽  
Xiaoyu Ju ◽  
Yang Peng ◽  
...  

2021 ◽  
Vol 14 (3) ◽  
pp. 1783-1800
Author(s):  
Russell W. Long ◽  
Andrew Whitehill ◽  
Andrew Habel ◽  
Shawn Urbanski ◽  
Hannah Halliday ◽  
...  

Abstract. In recent years wildland fires in the United States have had significant impacts on local and regional air quality and negative human health outcomes. Although the primary health concerns from wildland fires come from fine particulate matter (PM2.5), large increases in ozone (O3) have been observed downwind of wildland fire plumes (DeBell et al., 2004; Bytnerowicz et al., 2010; Preisler et al., 2010; Jaffe et al., 2012; Bytnerowicz et al., 2013; Jaffe et al., 2013; Lu et al., 2016; Lindaas et al., 2017; McClure and Jaffe, 2018; Liu et al., 2018; Baylon et al., 2018; Buysse et al., 2019). Conditions generated in and around wildland fire plumes, including the presence of interfering chemical species, can make the accurate measurement of O3 concentrations using the ultraviolet (UV) photometric method challenging if not impossible. UV photometric method instruments are prone to interferences by volatile organic compounds (VOCs) that are present at high concentrations in wildland fire smoke. Four different O3 measurement methodologies were deployed in a mobile sampling platform downwind of active prescribed grassland fire lines in Kansas and Oregon and during controlled chamber burns at the United States Forest Service, Rocky Mountain Research Station Fire Sciences Laboratory in Missoula, Montana. We demonstrate that the Federal Reference Method (FRM) nitric oxide (NO) chemiluminescence monitors and Federal Equivalent Method (FEM) gas-phase (NO) chemical scrubber UV photometric O3 monitors are relatively interference-free, even in near-field combustion plumes. In contrast, FEM UV photometric O3 monitors using solid-phase catalytic scrubbers show positive artifacts that are positively correlated with carbon monoxide (CO) and total gas-phase hydrocarbon (THC), two indicator species of biomass burning. Of the two catalytic scrubber UV photometric methods evaluated, the instruments that included a Nafion® tube dryer in the sample introduction system had artifacts an order of magnitude smaller than the instrument with no humidity correction. We hypothesize that Nafion®-permeating VOCs (such as aromatic hydrocarbons) could be a significant source of interference for catalytic scrubber UV photometric O3 monitors and that the inclusion of a Nafion® tube dryer assists with the mitigation of these interferences. The chemiluminescence FRM method is highly recommended for accurate measurements of O3 in wildland fire plume studies and at regulatory ambient monitoring sites frequently impacted by wildland fire smoke.


2021 ◽  
Vol 14 (2) ◽  
pp. 907-921
Author(s):  
Loredana G. Suciu ◽  
Robert J. Griffin ◽  
Caroline A. Masiello

Abstract. Here, we developed a zero-dimensional (0-D) modeling framework (LEVCHEM_v1) to provide insights into the atmospheric degradation of a key tracer emitted during biomass burning – levoglucosan (LEV), while additionally exploring its effects on the dynamics of secondary organic aerosols (SOA) and other gases. For this, we updated existing chemical mechanisms (homogeneous gas-phase chemistry and heterogeneous chemistry) in the BOXMOXv1.7 model to include the chemical degradation of LEV and its intermediary degradation products in both phases (gas and aerosol). In addition, we added a gas-particle partitioning mechanism to the model to account for the effect of evaporation and condensation on the phase-specific concentrations of LEV and its degradation products. Comparison of simulation results with measurements from various chamber experiments (spanning summer and winter conditions) show that the degradation timescale of LEV varied by phase, with gas-phase degradation occurring over ∼1.5–5 d and aerosol-phase degradation occurring over ∼8–36 h. These relatively short timescales suggest that most of the initial LEV concentration can be lost chemically or deposited locally before being transported regionally. We varied the heterogeneous reaction rate constant in a sensitivity analysis (for summer conditions only) and found that longer degradation timescales of LEV are possible, particularly in the aerosol phase (7 d), implying that some LEV may be transported regionally. The multiphase chemical degradation of LEV has effects on SOA and other gases. Several first- or second-generation products resulted from its degradation; most of the products include one or two carbonyl groups, one product contains a nitrate group, and a few products show the cleavage of C−C bonds. The relative importance of the products varies depending on the phase and the timing of the maximum concentration achieved during the simulation. Our estimated secondary organic aerosol SOA yields (4 %–32 %) reveal that conversion of LEV to secondary products is significant and occurs rapidly in the studied scenarios. LEV degradation affected other gases by increasing the concentrations of radicals and decreasing those of reactive nitrogen species. Decreases of the mixing ratios of nitrogen oxides appear to drive a more rapid increase in ozone compared with changes in volatile organic compounds levels. An important next step to confirm longer degradation timescales will be to extend the evaluation of the modeled LEV degradation beyond 3–6 h by using more extensive data from chambers and, possibly, from fire plumes. The mechanism developed here can be used in chemical transport models applied to fire plumes to trace LEV and its degradation products from source to deposition, to assess their atmospheric implications and to answer questions relevant to fire tracing, carbon and nitrogen cycling, and climate.


2020 ◽  
Vol 13 (12) ◽  
pp. 7069-7096
Author(s):  
Robert B. Chatfield ◽  
Meinrat O. Andreae ◽  
◽  

Abstract. Studies of emission factors from biomass burning using aircraft data complement the results of lab studies and extend them to conditions of immense hot conflagrations. A new theoretical development of plume theory for multiple tracers is developed after examining aircraft samples. We illustrate and discuss emissions relationships for 422 individual samples from many forest fire plumes in the Western USA. Samples are from two NASA investigations: ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys). This work provides sample-by-sample enhancement ratios (EnRs) for 23 gases and particulate properties. Many EnRs provide candidates for emission ratios (ERs, corresponding to the EnR at the source) when the origin and degree of transformation is understood. From these, emission factors (EFs) can be estimated, provided the fuel dry mass consumed is known or can be estimated using the carbon mass budget approach. This analysis requires understanding the interplay of mixing of the plume with surrounding air. Some initial examples emphasize that measured Ctot=CO2+CO in a fire plume does not necessarily describe the emissions of the total carbon liberated in the flames, Cburn. Rather, it represents Ctot=Cburn+Cbkgd, which includes possibly varying background concentrations for entrained air. Consequently, we present a simple theoretical description for plume entrainment for multiple tracers from the flame tops to hundreds of kilometers downwind and illustrate some intrinsic linear behaviors. The analysis suggests a mixed-effects regression emission technique (MERET), which can eliminate occasional strong biases associated with the commonly used normalized excess mixing ratio (NEMR) method. MERET splits Ctot to reveal Cburn by exploiting the fact that Cburn and all tracers respond linearly to dilution, while each tracer has consistent EnR behavior (slope of tracer concentration with respect to Cburn). The two effects are separable. Two or three or preferably more emission indicators are required as a minimum; here we used eight. In summary, MERET allows a fine spatial resolution (EnRs for individual observations) and comparison of similar plumes that are distant in time and space. Alkene ratios provide us with an approximate photochemical timescale. This allows discrimination and definition, by fire situation, of ERs, allowing us to estimate emission factors.


2020 ◽  
Vol 20 (23) ◽  
pp. 15443-15459 ◽  
Author(s):  
Patrick A. Barker ◽  
Grant Allen ◽  
Martin Gallagher ◽  
Joseph R. Pitt ◽  
Rebecca E. Fisher ◽  
...  

Abstract. Airborne sampling of methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), and nitrous oxide (N2O) mole fractions was conducted during field campaigns targeting fires over Senegal in February and March 2017 and Uganda in January 2019. The majority of fire plumes sampled were close to or directly over burning vegetation, with the exception of two longer-range flights over the West African Atlantic seaboard (100–300 km from source), where the continental outflow of biomass burning emissions from a wider area of West Africa was sampled. Fire emission factors (EFs) and modified combustion efficiencies (MCEs) were estimated from the enhancements in measured mole fractions. For the Senegalese fires, mean EFs and corresponding uncertainties in units of gram per kilogram of dry fuel were 1.8±0.19 for CH4, 1633±171.4 for CO2, and 67±7.4 for CO, with a mean MCE of 0.94±0.005. For the Ugandan fires, mean EFs were 3.1±0.35 for CH4, 1610±169.7 for CO2, and 78±8.9 for CO, with a mean modified combustion efficiency of 0.93±0.004. A mean N2O EF of 0.08±0.002 g kg−1 is also reported for one flight over Uganda; issues with temperature control of the instrument optical bench prevented N2O EFs from being obtained for other flights over Uganda. This study has provided new datasets of African biomass burning EFs and MCEs for two distinct study regions, in which both have been studied little by aircraft measurement previously. These results highlight the important intracontinental variability of biomass burning trace gas emissions and can be used to better constrain future biomass burning emission budgets. More generally, these results highlight the importance of regional and fuel-type variability when attempting to spatially scale biomass burning emissions. Further work to constrain EFs at more local scales and for more specific (and quantifiable) fuel types will serve to improve global estimates of biomass burning emissions of climate-relevant gases.


Sign in / Sign up

Export Citation Format

Share Document