scholarly journals Development of USP Apparatus 3 Dissolution Method with IVIVC for Extended Release Tablets of Metformin Hydrochloride and Development of a Generic Formulation

2019 ◽  
Vol 67 (1) ◽  
pp. 23-31
Author(s):  
Thamara de Carvalho Mendes ◽  
Alice Simon ◽  
Jaqueline Correia Villaça Menezes ◽  
Eduardo Costa Pinto ◽  
Lucio Mendes Cabral ◽  
...  
2018 ◽  
Vol 66 (7) ◽  
pp. 701-707 ◽  
Author(s):  
Kerolayne de Castro Bezerra ◽  
Eduardo Costa Pinto ◽  
Lucio Mendes Cabral ◽  
Valéria Pereira de Sousa

Author(s):  
HANAN M. HASHEM ◽  
AYA R. ABDOU ◽  
NADIA M. MURSI ◽  
LAILA H. EMARA

Objective: This study was proposed to evaluate and compare the in vitro dissolution profiles of six Metformin Hydrochloride (MH) market products. Methods: Different dissolution apparatuses (USP apparatus II, IV and beaker method) were used to evaluate the dissolution profiles (in phosphate buffer, pH 6.8) of two immediate release (IR) generic products of Metformin Hydrochloride (MH): Cidophage® 1000 mg (G1, Egyptian market) and Metformin arrow® 1000 mg (G2, French market) with respect to the reference products named Glucophage® 850 mg (R1, Egyptian market and R2, French market). In addition to a generic controlled-release (CR) product; Cidophage Retard® 850 mg (G3) versus the reference product; Glucophage XR® 1000 mg (R3) (both from Egyptian market). Dissolution efficiency (D. E.) and the similarity factor (f2) were calculated. Weight uniformity, hardness, tablet dimensions and MH content were measured. Results: Results of the three apparatuses showed that MH IR products studied (reference and generics) did not meet the 75% USP 30 specifications for MH dissolved at 30 min. For MH CR products, Glucophage XR® did not fulfill the USP release criteria, while Cidophage Retard® did. USP apparatus IV revealed the highest sensitivity and discriminative capability. Conclusion: Generally, MH IR generics (G1 and G2) might be interchangeable with the innovator product (Glucophage®). However, Cidophage Retard® might not be interchangeable with Glucophage XR®.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (08) ◽  
pp. 47-50
Author(s):  
H Farheen ◽  
◽  
T Mamatha . ◽  
Z Yasmeen ◽  
Rao J. Venkateswara

A dissolution method was developed and validated for evaluation of the dissolution behavior of capsule dosage form of tramadol hydrochloride as there was no official method available. The UV spectrophotometric method developed was based on the direct estimation method using 271 nm as λmax of tramadol hydrochloride. The method was validated according to International Conference on Harmonisation (ICH) guidelines which include accuracy, precision, specificity, linearity, and analytical range. In addition, solubility and stability of the drug in dissolution medium i.e., 0.1 N HCl was studied. The established dissolution conditions were 900 mL dissolution medium at temperature 37 ± 0.5°C, using USP apparatus I at stirring rate of 100 rpm for 30 min. The corresponding dissolution profiles were constructed and all the selected brands showed more than 80% drug release with in 30 min. Thus, the proposed dissolution method can be applied successfully for the quality control of tramadol hydrochloride capsules.


Sign in / Sign up

Export Citation Format

Share Document