The AAPS Journal
Latest Publications


TOTAL DOCUMENTS

1894
(FIVE YEARS 386)

H-INDEX

101
(FIVE YEARS 10)

Published By American Association Of Pharmaceutical Scientists

1550-7416

2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Yukiko Murata ◽  
Sibylle Neuhoff ◽  
Amin Rostami-Hodjegan ◽  
Hiroyuki Takita ◽  
Zubida M. Al-Majdoub ◽  
...  

AbstractDrug development for the central nervous system (CNS) is a complex endeavour with low success rates, as the structural complexity of the brain and specifically the blood-brain barrier (BBB) poses tremendous challenges. Several in vitro brain systems have been evaluated, but the ultimate use of these data in terms of translation to human brain concentration profiles remains to be fully developed. Thus, linking up in vitro-to-in vivo extrapolation (IVIVE) strategies to physiologically based pharmacokinetic (PBPK) models of brain is a useful effort that allows better prediction of drug concentrations in CNS components. Such models may overcome some known aspects of inter-species differences in CNS drug disposition. Required physiological (i.e. systems) parameters in the model are derived from quantitative values in each organ. However, due to the inability to directly measure brain concentrations in humans, compound-specific (drug) parameters are often obtained from in silico or in vitro studies. Such data are translated through IVIVE which could be also applied to preclinical in vivo observations. In such exercises, the limitations of the assays and inter-species differences should be adequately understood in order to verify these predictions with the observed concentration data. This report summarizes the state of IVIVE-PBPK-linked models and discusses shortcomings and areas of further research for better prediction of CNS drug disposition.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Arian Emami Riedmaier
Keyword(s):  

2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Mariana Guimarães ◽  
Maria Vertzoni ◽  
Nikoletta Fotaki

AbstractThis study aimed to build a physiologically based pharmacokinetic (PBPK) model coupled with age-appropriate in vitro dissolution data to describe drug performance in adults and pediatric patients. Montelukast sodium was chosen as a model drug. Two case studies were investigated: case study 1 focused on the description of formulation performance from adults to children; case study 2 focused on the description of the impact of medicine co-administration with vehicles on drug exposure in infants. The PBPK model for adults and pediatric patients was developed in Simcyp® v18.2 informed by age-appropriate in vitro dissolution results obtained in a previous study. Oral administration of montelukast was simulated with the ADAM™ model. For case study 1, the developed PBPK model accurately described montelukast exposure in adults and children populations after the administration of montelukast chewable tablets. Two-stage dissolution testing in simulated fasted gastric to intestinal conditions resulted in the best description of in vivo drug performance in adults and children. For case study 2, a good description of in vivo drug performance in infants after medicine co-administration with vehicles was achieved by incorporating in vitro drug dissolution (under simulated fasted gastric to fed intestinal conditions) into a fed state PBPK model with consideration of the in vivo dosing conditions (mixing of formulation with applesauce or formula). The case studies presented demonstrate how a PBPK absorption modelling strategy can facilitate the description of drug performance in the pediatric population to support decision-making and biopharmaceutics understanding during pediatric drug development. Graphical abstract


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Mariana Guimarães ◽  
Pascal Somville ◽  
Maria Vertzoni ◽  
Nikoletta Fotaki

AbstractThis study aimed to explore the potential of biopharmaceutics in vitro tools to predict drug product performance in the pediatric population. Biorelevant dissolution set-ups were used to predict how age and medicine administration practices affect the in vitro dissolution of oral formulations of a poorly water-soluble compound, montelukast. Biorelevant age-appropriate dissolution studies of Singulair® (granules and chewable tablets) were conducted with the µDISS profiler™, USP 4 apparatus, USP 2 apparatus, and mini-paddle apparatus. Biorelevant simulating fluids representative of adult and pediatric conditions were used in the dissolution studies. The biorelevant dissolution conditions were appropriately selected (i.e. volumes, transit times, etc.) to mimic the gastrointestinal conditions of each of the subpopulations tested. Partial least squares regression (PLS-R) was performed to understand the impact of in vitro variables on the dissolution of montelukast. Montelukast dissolution was significantly affected by the in vitro hydrodynamics used to perform the dissolution tests (µDISS profiler™: positive effect); choice of simulation of gastric (negative effect) and/or intestinal conditions (positive effect) of the gastrointestinal tract; and simulation of prandial state (fasted state: negative effect, fed state: positive effect). Age-related biorelevant dissolution of Singulair® granules predicted the in vivo effect of the co-administration of the formulation with applesauce and formula in infants. This study demonstrates that age-appropriate biorelevant dissolution testing can be a valuable tool for the assessment of drug performance in the pediatric population. Graphical Abstract


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Dylan A. Hendy ◽  
Eva A. Amouzougan ◽  
Isabella C. Young ◽  
Eric M. Bachelder ◽  
Kristy M. Ainslie
Keyword(s):  

2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Jinjian Zheng ◽  
Christine L. Kirkpatrick ◽  
Daniel Lee ◽  
Xinxin Han ◽  
Ana I. Martinez ◽  
...  

AbstractThe recent detection of potent carcinogenic nitrosamine impurities in several human medicines has triggered product recalls and interrupted the supply of critical medications for hundreds of millions of patients, illuminating the need for increased testing of nitrosamines in pharmaceutical products. However, the development of analytical methods for nitrosamine detection is challenging due to high sensitivity requirements, complex matrices, and the large number and variety of samples requiring testing. Herein, we report an analytical method for the analysis of a common nitrosamine, N-nitrosodimethylamine (NDMA), in pharmaceutical products using full evaporation static headspace gas chromatography with nitrogen phosphorous detection (FE-SHSGC-NPD). This method is sensitive, specific, accurate, and precise and has the potential to serve as a universal method for testing all semi-volatile nitrosamines across different drug products. Through elimination of the detrimental headspace-liquid partition, a quantitation limit of 0.25 ppb is achieved for NDMA, a significant improvement upon traditional LC-MS methods. The extraction of nitrosamines directly from solid sample not only simplifies the sample preparation procedure but also enables the method to be used for different products as is or with minor modifications, as demonstrated by the analysis of NDMA in 10+ pharmaceutical products. The in situ nitrosation that is commonly observed in GC methods for nitrosamine analysis was completely inhibited by the addition of a small volume solvent containing pyrogallol, phosphoric acid, and isopropanol. Employing simple procedures and low-cost instrumentation, this method can be implemented in any analytical laboratory for routine nitrosamine analysis, ensuring patient safety and uninterrupted supply of critical medications.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Melissa Metry ◽  
James E. Polli

AbstractThe objective of this review article is to summarize literature data pertinent to potential excipient effects on intestinal drug permeability and transit. Despite the use of excipients in drug products for decades, considerable research efforts have been directed towards evaluating their potential effects on drug bioavailability. Potential excipient concerns stem from drug formulation changes (e.g., scale-up and post-approval changes, development of a new generic product). Regulatory agencies have established in vivo bioequivalence standards and, as a result, may waive the in vivo requirement, known as a biowaiver, for some oral products. Biowaiver acceptance criteria are based on the in vitro characterization of the drug substance and drug product using the Biopharmaceutics Classification System (BCS). Various regulatory guidance documents have been issued regarding BCS-based biowaivers, such that the current FDA guidance is more restrictive than prior guidance, specifically about excipient risk. In particular, sugar alcohols have been identified as potential absorption-modifying excipients. These biowaivers and excipient risks are discussed here.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Szabina Kádár ◽  
Petra Tőzsér ◽  
Brigitta Nagy ◽  
Attila Farkas ◽  
Zsombor K. Nagy ◽  
...  

AbstractThe work aimed to develop the Absorption Driven Drug Formulation (ADDF) concept, which is a new approach in formulation development to ensure that the drug product meets the expected absorption rate. The concept is built on the solubility-permeability interplay and the rate of supersaturation as the driving force of absorption. This paper presents the first case study using the ADDF concept where not only dissolution and solubility but also permeation of the drug is considered in every step of the formulation development. For that reason, parallel artificial membrane permeability assay (PAMPA) was used for excipient selection, small volume dissolution-permeation apparatus was used for testing amorphous solid dispersions (ASDs), and large volume dissolution-permeation tests were carried out to characterize the final dosage forms. The API-excipient interaction studies on PAMPA indicated differences when different fillers or surfactants were studied. These differences were then confirmed with small volume dissolution-permeation assays where the addition of Tween 80 to the ASDs decreased the flux dramatically. Also, the early indication of sorbitol’s advantage over mannitol by PAMPA has been confirmed in the investigation of the final dosage forms by large-scale dissolution-permeation tests. This difference between the fillers was observed in vivo as well. The presented case study demonstrated that the ADDF concept opens a new perspective in generic formulation development using fast and cost-effective flux-based screening methods in order to meet the bioequivalence criteria.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Margareta Bego ◽  
Nikunjkumar Patel ◽  
Rodrigo Cristofoletti ◽  
Amin Rostami-Hodjegan

AbstractWhile the concept of ‘Virtual Bioequivalence’ (VBE) using a combination of modelling, in vitro tests and integration of pre-existing data on systems and drugs is growing from its infancy, building confidence on VBE outcomes requires demonstration of its ability not only in predicting formulation-dependent systemic exposure but also the expected degree of population variability. The concept of variation influencing the outcome of BE, despite being hidden with the cross-over nature of common BE studies, becomes evident when dealing with the acceptance criteria that consider the 90% confidence interval (CI) around the relative bioavailability. Hence, clinical studies comparing a reference product against itself may fail due to within-subject variations associated with the two occasions that the individual receives the same formulation. In this proof-of-concept study, we offer strategies to capture the most realistic predictions of CI around the pharmacokinetic parameters by propagating physiological variations through physiologically based pharmacokinetic modelling. The exercise indicates feasibility of the approach based on comparisons made between the simulated and observed WSV of pharmacokinetic parameters tested for a clinical bioequivalence case study. However, it also indicates that capturing WSV of a large array of physiological parameters using backward translation modelling from repeated BE studies of reference products would require a diverse set of drugs and formulations. The current case study of delayed-release formulation of posaconazole was able to declare certain combinations of WSV of physiological parameters as ‘not plausible’. The eliminated sets of WSV values would be applicable to PBPK models of other drugs and formulations.


Sign in / Sign up

Export Citation Format

Share Document