Greater Anterior Knee Laxity and General Joint Laxity Predict Greater Varus-Valgus and Rotation Knee Laxity

2006 ◽  
Vol 38 (Supplement) ◽  
pp. S66
Author(s):  
Sandra J. Shultz ◽  
Yohei Shimokochi ◽  
Anh-Dung Nguyen ◽  
Randy J. Schmitz ◽  
Bruce D. Beynnon ◽  
...  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Mayuu Shagawa ◽  
Sae Maruyama ◽  
Chie Sekine ◽  
Hirotake Yokota ◽  
Ryo Hirabayashi ◽  
...  

Abstract Background One risk factor for anterior cruciate ligament (ACL) injury may be fluctuations in female hormones. This study examined variability in joint laxity, as a risk factor for ACL injury, during the menstrual cycle. Methods Subjects were 15 female university students with regular menstrual cycles. We measured estradiol (E2) concentration, anterior knee laxity (AKL), stiffness, genu recurvatum (GR), and general joint laxity (GJL) during the late follicular and ovulatory phases. AKL was measured as anterior tibial displacement of the femur after application of 44-, 89-, and 133-N loads on the tibia. Stiffness was calculated as Δforce/Δdisplacement at loads of 44–89 N and between 89 and 133 N. GR was measured prone, with the base of the patella distal to the edge of the bed. The University of Tokyo joint laxity test was used to evaluate GJL. Results E2 concentration was significantly higher in the ovulatory phase than in the late follicular phase (p = 0.018), AKL and stiffness did not differ significantly between phases, and GR and GJL were significantly higher in the ovulatory phase than in the late follicular phase (p = 0.011, 0.031). Conclusion These findings suggest that E2 concentrations may affect GR and GJL during the menstrual cycle.


2010 ◽  
Vol 28 (11) ◽  
pp. 1411-1417 ◽  
Author(s):  
Sandra J. Shultz ◽  
Beverly J. Levine ◽  
Anh-Dung Nguyen ◽  
Hyunsoo Kim ◽  
Melissa M. Montgomery ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 232596712199304
Author(s):  
Sae Maruyama ◽  
Tomomi Yamazaki ◽  
Yuuki Sato ◽  
Yukako Suzuki ◽  
Sohei Shimizu ◽  
...  

Background: Anterior cruciate ligament (ACL) injury has been reported to have a higher incidence in women than in men. Purpose/Hypothesis: The purpose was to examine the relationship of anterior knee laxity (AKL), stiffness, and generalized joint laxity (GJL) with respect to the menstrual cycle. It was hypothesized that AKL and GJL would increase during the ovulation phase, when estrogen levels are high. Study Design: Descriptive laboratory study. Methods: A total of 15 female university students aged >20 years and with normal menstrual cycles were evaluated. AKL was measured as anterior tibial displacement of the femur after application of 44-, 89-, and 133-N loads to the tibia. Stiffness was calculated as Δ force/Δ displacement at loads between 44 and 89 N and between 89 and 133 N. The University of Tokyo joint laxity test was used for evaluation of GJL. The participants’ menstrual cycle was divided into the early follicular, late follicular, ovulation, and luteal phases using the basal body temperature method and an ovulation kit; AKL and GJL were measured once during each phase. Participants were also stratified according to the presence or absence of genu recurvatum (GR). Results: There was no significant difference in AKL, stiffness, or GJL among the menstrual phases. In the GR group, AKL values at 89 N and 133 N were significantly higher in the ovulation phase than in the early follicular phase ( P = .025 and P =.018, respectively); there were no significant differences in AKL among the phases in the non-GR group. In addition, the GR group in the ovulation phase had significantly higher AKL values at 44 N, 89 N, and 133 N compared with the non-GR group ( P = .013, P = .005, and P = .010, respectively). There were no significant differences in GJL among the phases in the GR or non-GR groups. Conclusion: Women with GR may have increased AKL in the ovulation phase when compared with the early follicular phase, which may be a risk factor for ACL injury. Clinical Relevance: The results of this study suggest that the ovulation phase may be related to the greater incidence of ACL injuries in women.


2021 ◽  
pp. 036354652199967
Author(s):  
Kadir Büyükdoğan ◽  
Michael S. Laidlaw ◽  
Michael A. Fox ◽  
Michelle E. Kew ◽  
Mark D. Miller

Background: It remains unclear if use of the lateral meniscus anterior horn (LMAH) as a landmark will produce consistent tunnel positions in the anteroposterior (AP) distance across the tibial plateau. Purpose: To evaluate the AP location of anterior cruciate ligament (ACL) reconstruction tibial tunnels utilizing the LMAH as an intra-articular landmark and to examine how tunnel placement affects knee stability and clinical outcomes. Study Design: Cohort study; Level of evidence, 3. Methods: A retrospective review was conducted of 98 patients who underwent primary ACL reconstruction with quadrupled hamstring tendon autografts between March 2013 and June 2017. Patients with unilateral ACL injuries and a minimum follow-up of 2 years were included in the study. All guide pins for the tibial tunnel were placed using the posterior border of the LMAH as an intra-articular landmark. Guide pins were evaluated with the Bernard-Hertel grid in the femur and the Stäubli-Rauschning method in the tibia. Patients were divided by the radiographic location of the articular entry point of the guide pin with relation to the anterior 40% of the tibial plateau. Outcomes were evaluated by the Marx Activity Scale and International Knee Documentation Committee (IKDC) form. Anterior knee laxity was evaluated using a KT-1000 arthrometer and graded with the objective portion of the IKDC form. Rotational stability was evaluated using the pivot-shift test. Results: A total of 60 patients were available for follow-up at a mean 28.6 months. The overall percentage of AP placement of the tibial tunnel was 39.3% ± 3.8% (mean ± SD; range, 31%-47%). Side-to-side difference of anterior knee laxity was significantly lower in the anterior group than the posterior group (1.2 ± 1.1 mm vs 2.5 ± 1.3 mm; P < .001; r = 0.51). The percentage of AP placement of the tibial tunnel demonstrated a positive medium correlation with side-to-side difference of anterior knee laxity as measured by a KT-1000 arthrometer ( r = 0.430; P < .001). The anterior group reported significantly better distribution of IKDC grading as compared with the posterior group (26 grade A and 6 grade B vs 15 grade A and 13 grade B; P = .043; V = 0.297). The pivot-shift test results and outcome scores showed no significant differences between the groups. Conclusion: Using the posterior border of the LMAH as an intraoperative landmark yields a wide range of tibial tunnel locations along the tibial plateau, with anterior placement of the tibial tunnel leading toward improved anterior knee stability.


Author(s):  
Hsiu-Chen Lin ◽  
Weng-Hang Lai ◽  
Chia-Ming Chang ◽  
Horng-Chaung Hsu

Female athletes are more likely to sustain an anterior cruciate ligament (ACL) injury than male athletes. Previous study has showed that female individuals had larger anterior knee laxity than their male counterparts [1]. Researchers have also reported that knee laxity and hyperextension knee were a possible factor contributing to ACL injury [2]. Loudon showed that a person with hyperextension knee, either healthy or ACL-injured, had poorer proprioceptive control. Even more, ACL-injured subjects with hyperextension knee demonstrated a declined function of proprioception feedback loop and the ability to initiate protective reflexes [3].


2019 ◽  
Vol 7 (8) ◽  
pp. 232596711986300 ◽  
Author(s):  
Kate E. Webster ◽  
Julian A. Feller

Background: Younger athletes have high rates of second anterior cruciate ligament (ACL) injury. Return-to-sport criteria have been proposed to enable athletes to make a safe return, but they frequently lack validation. It is unclear whether commonly recorded clinical measures can help to identify high-risk athletes. Purpose: To explore the association between commonly recorded clinical outcome measures and second ACL injury in a young, active patient group. Study Design: Cohort study; Level of evidence, 2. Methods: Included in this study were 329 athletes (200 males, 129 females) younger than 20 years at the time of first primary ACL reconstruction surgery who had subsequently returned to sport participation. Clinical examination included range of knee motion (passive flexion and extension deficits), instrumented anterior knee laxity, and single- and triple-crossover hop for distance. Patients also completed the subjective International Knee Documentation Committee form. All measures were collected prospectively at a 12-month postoperative clinical review. Patients were evaluated for a minimum 3 years to determine the incidence of subsequent ACL injury. Results: A total of 95 patients (29%) sustained a second ACL injury following clinical assessment and return to sport. There were 50 graft ruptures and 45 contralateral ACL injuries. Patients with a flexion deficit of 5° had over 2 times the odds of sustaining a graft rupture (odds ratio, 2.3; P < .05), and patients with a side-to-side difference in anterior knee laxity of 3 mm or greater had over 2 times the odds of sustaining a contralateral ACL injury (odds ratio, 2.4; P < .05). Overall, 29% (94 of 329) of patients met the threshold for satisfactory function on all 6 clinical measures; these patients had a 33% reduction in the risk of sustaining a second ACL injury ( P = .05) as compared with those who did not meet all clinical thresholds. Conclusion: Clinical measures of knee flexion and stability may have utility to screen for and identify patients who are at greater risk for a second ACL injury in an already high-risk group (ie, age and activity level).


Sign in / Sign up

Export Citation Format

Share Document