Effect Of Local Vibration Treatment On Muscle Damage Parameters Following Eccentric Muscle Contractions.

2010 ◽  
Vol 42 ◽  
pp. 754
Author(s):  
Jooyoung Kim ◽  
Kwang Hoon Park ◽  
Hyun Ho Song ◽  
Joohyung Lee
2021 ◽  
Vol 10 (22) ◽  
pp. 5461
Author(s):  
Anna Piotrowska ◽  
Wanda Pilch ◽  
Łukasz Tota ◽  
Marcin Maciejczyk ◽  
Dariusz Mucha ◽  
...  

Prolonged exercise can lead to muscle damage, with soreness, swelling, and ultimately reduced strength as a consequence. It has been shown that whole-body vibration (WBV) improves recovery by reducing the levels of stress hormones and the activities of creatine kinase (CK) and lactate dehydrogenase (LDH). The aim of the study was to demonstrate the effect of local vibration treatment applied after exercise on the level of selected markers of muscle fiber damage. The study involved 12 untrained men, aged 21.7 ± 1.05 years, with a VO2peak of 46.12 ± 3.67 mL·kg−1·min−1. A maximal intensity test to volitional exhaustion was performed to determine VO2peak and individual exercise loads for prolonged exercise. The subjects were to perform 180 min of physical effort with an intensity of 50 ± 2% VO2peak. After exercise, they underwent a 60 min vibration treatment or placebo therapy using a mattress. Blood samples were taken before, immediately after the recovery procedure, and 24 h after the end of the exercise test. Myoglobin (Mb) levels as well as the activities of CK and LDH were recorded. Immediately after the hour-long recovery procedure (vibration or placebo), the mean concentrations of the determined indices were significantly different from baseline values. In the vibration group, significantly lower values of Mb (p = 0.005), CK (p = 0.030), and LDH (p = 0.005) were seen. Differences were also present 24 h after the end of the exercise test. The results of the vibration group compared to the control group differed in respect to Mb (p = 0.002), CK (p = 0.029), and LDH (p = 0.014). After prolonged physical effort, topical vibration improved post-workout recovery manifested by lower CK and LDH activity and lower Mb concentration compared to a control group.


2008 ◽  
Vol 105 (5) ◽  
pp. 1620-1627 ◽  
Author(s):  
Abigail L. Mackey ◽  
Jens Bojsen-Moller ◽  
Klaus Qvortrup ◽  
Henning Langberg ◽  
Charlotte Suetta ◽  
...  

It is unknown whether muscle damage at the level of the sarcomere can be induced without lengthening contractions. To investigate this, we designed a study where seven young, healthy men underwent 30 min of repeated electrical stimulated contraction of m. gastrocnemius medialis, with the ankle and leg locked in a fixed position. Two muscle biopsies were collected 48 h later: one from the stimulated muscle and one from the contralateral leg as a control. The biopsies were analyzed immunohistochemically for inflammatory cell infiltration and intermediate filament disruption. Ultrastructural changes at the level of the z-lines were investigated by transmission electron microscopy. Blood samples were collected for measurement of creatine kinase activity, and muscle soreness was assessed in the days following stimulation. The biopsies from the stimulated muscle revealed macrophage infiltration and desmin-negative staining in a small percentage of myofibers in five and four individuals, respectively. z-Line disruption was evident at varying magnitudes in all subjects and displayed a trend toward a positive correlation ( r = 0.73, P = 0.0663) with the force produced by stimulation. Increased muscle soreness in all subjects, combined with a significant increase in creatine kinase activity ( P < 0.05), is indirectly suggestive of muscle damage, and the novel findings of the present study, i.e., 1) macrophages infiltration, 2) lack of desmin staining, and 3) z-line disruption, provide direct evidence of damage at the myofiber and sarcomere levels. These data support the hypothesis that muscle damage at the level of the sarcomere can be induced without lengthening muscle contractions.


Sign in / Sign up

Export Citation Format

Share Document