Effects Of Whey, Casein, Or Milk Protein Ingestion On Muscle Protein Synthesis After Endurance Exercise

2014 ◽  
Vol 46 ◽  
pp. 99
Author(s):  
Atsushi Kanda ◽  
Kyosuke Nakayama ◽  
Chiaki Sanbongi ◽  
Masashi Nagata ◽  
Shuji Ikegami ◽  
...  
2010 ◽  
Vol 44 (14) ◽  
pp. i6-i7 ◽  
Author(s):  
C. Hulston ◽  
E. Wolsk ◽  
T. Grondahl ◽  
C. Yfanti ◽  
G. van Hall

Nutrients ◽  
2016 ◽  
Vol 8 (6) ◽  
pp. 339 ◽  
Author(s):  
Atsushi Kanda ◽  
Kyosuke Nakayama ◽  
Chiaki Sanbongi ◽  
Masashi Nagata ◽  
Shuji Ikegami ◽  
...  

2019 ◽  
Vol 127 (6) ◽  
pp. 1792-1801 ◽  
Author(s):  
Stephan van Vliet ◽  
Joseph W. Beals ◽  
Andrew M. Holwerda ◽  
Russell S. Emmons ◽  
Joy P. Goessens ◽  
...  

The anabolic action of “fast” whey protein on the regulation of postprandial muscle protein synthesis has been established to be short-lived in healthy young adults. We assessed the time course of anabolic signaling activation and stimulation of myofibrillar protein synthesis rates (MPS) after ingestion of a food source that represents a more typical meal-induced pattern of aminoacidemia. Seven young men (age: 22 ± 1 y) underwent repeated blood and biopsy sampling during primed, continuous l-[ ring-2H5]phenylalanine and l-[1-13C]leucine tracer infusions and ingested 38 g of l-[1-13C]phenylalanine- and l-[1-13C]leucine-labeled milk protein concentrate. A total of ∼27 ± 4 (∼10 g) and ∼31 ± 1% (∼12 g) of dietary protein-derived amino acids were released in circulation between 0 and 120 min and 120–300 min, respectively, of the postprandial period. l-[ ring-2H5]phenylalanine-based MPS increased above basal (0.025 ± 0.008%/h) by ∼75% (0.043 ± 0.009%/h; P = 0.05) between 0 and 120 min and by ∼86% (0.046 ± 0.004%/h; P = 0.02) between 120 and 300 min, respectively. l-[1-13C]leucine-based MPS increased above basal (0.027 ± 0.002%/h) by ∼72% (0.051 ± 0.016%/h; P = 0.10) between 0 and 120 min and by ∼62% (0.047 ± 0.004%/h; P = 0.001) between 120 and 300 min, respectively. Myofibrillar protein-bound l-[1-13C]phenylalanine increased over time ( P < 0.001) and equaled 0.004 ± 0.001, 0.008 ± 0.002, 0.017 ± 0.004, and 0.020 ± 0.003 mole percent excess at 60, 120, 180, and 300 min, respectively, of the postprandial period. Milk protein ingestion increased mTORC1 phosphorylation at 120, 180, and 300 min of the postprandial period (all P < 0.05). Our results show that ingestion of 38 g of milk protein results in sustained increases in MPS throughout a 5-h postprandial period in healthy young men. NEW & NOTEWORTHY The stimulation of muscle protein synthesis after whey protein ingestion is short-lived due to its transient systemic appearance of amino acids. Our study characterized the muscle anabolic response to a protein source that results in a more gradual release of amino acids into circulation. Our work demonstrates that a sustained increase in postprandial plasma amino acid availability after milk protein ingestion results in a prolonged stimulation of muscle protein synthesis rates in healthy young men.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 651-651
Author(s):  
Philippe J M Pinckaers ◽  
Michelle E G Weijzen ◽  
Lisanne H P Houben ◽  
Antoine H Zorenc ◽  
Imre W K Kouw ◽  
...  

Abstract Objectives The muscle protein synthetic response to the ingestion of animal based proteins has been reported to be superior to the ingestion of plant based proteins. The lesser anabolic properties of plant based compared with animal based proteins has been attributed to differences in essential amino acid (EAA) contents and amino acid composition. This study compares post-prandial muscle protein synthesis rates following the ingestion of 30 g milk protein with the ingestion of 30 g corn protein or a blend of 30 g corn and milk protein in vivo, in young males. Methods In a randomized, double blind, parallel-group design, 36 healthy young males (26 ± 4 y) received a primed continuous infusion of L-[ring-13C6]-phenylalanine and ingested 30 g milk protein (MILK), 30 g corn protein (CORN), or a blend of 15 g corn protein plus 15 g milk protein (CORN + MILK) (n = 12 per group). Blood and muscle biopsies were collected for 5 h following protein ingestion to assess post-prandial plasma amino acid profiles and myofibrillar protein synthesis rates. Data were analyzed with 2-way repeated measures ANOVA and independent samples t-test. Data are expressed as mean ± SD. Results MILK increased plasma EAA concentrations more when compared to CORN (incremental area under curve (iAUC): 151 ± 31 vs 77 ± 19 mmol/L/300 min, respectively; P &lt; 0.001). Both milk and corn protein ingestion increased myofibrillar protein synthesis rates (P &lt; 0.001), with no differences between MILK and CORN (from 0.014 ± 0.014 to 0.053 ± 0.013 and from 0.017 ± 0.011 to 0.052 ± 0.013%/h, respectively; time*treatment P = 0.661). When MILK was compared to CORN + MILK, the iAUC for plasma EAA concentrations increased more in MILK when compared to CORN + MILK (151 ± 31 vs 126 ± 24 mmol/L/300 min, respectively; P = 0.036). Corn plus milk protein ingestion also increased myofibrillar protein synthesis rates (from 0.015 ± 0.015 to 0.052 ± 0.024%/h; P &lt; 0.001), with no differences between MILK and CORN + MILK (time*treatment P = 0.823). Conclusions Ingestion of 30 g milk protein, 30 g corn protein, or a blend of 15 g corn plus 15 g milk protein increases muscle protein synthesis rates in vivo in young males. Post-prandial muscle protein synthesis rates following the ingestion of 30 g milk protein do not differ from rates observed after ingesting 30 g corn protein or a blend providing 15 g milk plus 15 g corn protein in vivo, in young males. Funding Sources TiFN.


2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Lisa Vislocky ◽  
P. Courtney Gaine ◽  
Matthew Pikosky ◽  
Douglas Bolster ◽  
Arny Ferrando ◽  
...  

2020 ◽  
Vol 112 (2) ◽  
pp. 303-317 ◽  
Author(s):  
Tyler A Churchward-Venne ◽  
Philippe J M Pinckaers ◽  
Joey S J Smeets ◽  
Milan W Betz ◽  
Joan M Senden ◽  
...  

ABSTRACT Background Protein ingestion increases skeletal muscle protein synthesis rates during recovery from endurance exercise. Objectives We aimed to determine the effect of graded doses of dietary protein co-ingested with carbohydrate on whole-body protein metabolism, and skeletal muscle myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis rates during recovery from endurance exercise. Methods In a randomized, double-blind, parallel-group design, 48 healthy, young, endurance-trained men (mean ± SEM age: 27 ± 1 y) received a primed continuous infusion of l-[ring-2H5]-phenylalanine, l-[ring-3,5-2H2]-tyrosine, and l-[1-13C]-leucine and ingested 45 g carbohydrate with either 0 (0 g PRO), 15 (15 g PRO), 30 (30 g PRO), or 45 (45 g PRO) g intrinsically l-[1-13C]-phenylalanine and l-[1-13C]-leucine labeled milk protein after endurance exercise. Blood and muscle biopsy samples were collected over 360 min of postexercise recovery to assess whole-body protein metabolism and both MyoPS and MitoPS rates. Results Protein intake resulted in ∼70%–74% of the ingested protein-derived phenylalanine appearing in the circulation. Whole-body net protein balance increased dose-dependently after ingestion of 0, 15, 30, or 45 g protein (mean ± SEM: −0.31± 0.16, 5.08 ± 0.21, 10.04 ± 0.30, and 13.49 ± 0.55 μmol phenylalanine · kg−1 · h−1, respectively; P &lt; 0.001). 30 g PRO stimulated a ∼46% increase in MyoPS rates (%/h) compared with 0 g PRO and was sufficient to maximize MyoPS rates after endurance exercise. MitoPS rates were not increased after protein ingestion; however, incorporation of dietary protein–derived l-[1-13C]-phenylalanine into de novo mitochondrial protein increased dose-dependently after ingestion of 15, 30, and 45 g protein at 360 min postexercise (0.018 ± 0.002, 0.034 ± 0.002, and 0.046 ± 0.003 mole percentage excess, respectively; P &lt; 0.001). Conclusions Protein ingested after endurance exercise is efficiently digested and absorbed into the circulation. Whole-body net protein balance and dietary protein–derived amino acid incorporation into mitochondrial protein respond to increasing protein intake in a dose-dependent manner. Ingestion of 30 g protein is sufficient to maximize MyoPS rates during recovery from a single bout of endurance exercise. This trial was registered at trialregister.nl as NTR5111.


2010 ◽  
Vol 42 ◽  
pp. 63
Author(s):  
Louise M. Burke ◽  
Megan L. Ross ◽  
Vernon G. Coffey ◽  
Daniel R. Moore ◽  
Stuart M. Phillips ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document