A GRU Network-Based Approach for Steam Drum Water Level Predictions

2020 ◽  
Vol 53 (5) ◽  
pp. 198-205
Author(s):  
Yan Ma ◽  
Hongguang Li
Keyword(s):  
2011 ◽  
Vol 130-134 ◽  
pp. 3455-3458
Author(s):  
Yuan Fang Xin

A control system for water level of boiler steam drum based on DSP microprocessor is designed in this paper. The technique of fuzzy control was applied to controlling the water level of the steam drum, the operational principle and application of the fuzzy-PID arithmetic are described. The water level controller with good control effect is developed. Firstly the hardware structure of system is introduced in the paper and then investigates the fuzzy-PID arithmetic carry out, and finally, the simplified program flowchart are given.


1975 ◽  
Vol 97 (4) ◽  
pp. 645-654 ◽  
Author(s):  
K. L. Poon

A theory is presented for predicting the transient behavior of bubbles in the downcomer and riser loop. It is found that a sudden drop in boiler pressure could seriously reduce the circulation velocity and this is attributed to steam formation in the downcomer tube. The reduction of the circulation velocity tends to prolong existence of individual bubbles in the water phase and therefore increases the water level swell. Transient behavior of circulation velocity in the riser, and water level responses in the steam drum were measured in a two-tube experimental boiler following a step increase in steam control-valve opening for various boiler pressures.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Cuihui Shen ◽  
Yamin Zhao ◽  
Yiqun Li

Nowadays, our life needs more and more electricity, and our lives cannot be without electricity, which requires our power to develop more quickly. Power plants are undoubtedly the place where electricity is produced. And now most of the power plant or chemical energy can be converted into heat, and then through the heat to do power production. The boiler is the main part of the power plant. Boiler unit consists of boiler body equipment and auxiliary equipment. The main body of the boiler consists of 'pot' (soft drinks system) and 'furnace' (combustion system). Baotou thermal power plant is mainly burning gas. The gas and air are at a certain rate into the furnace burning. This can greatly reduce the pollution of the environment, but also the full use of fuel. The soda system is mainly carried out in the drum. The heat generated by the combustion system heats the water in the drum, producing steam and then pushing the steam turbine into mechanical energy and finally into electrical energy. This has a high demand for water level, water composition, and the temperature of the steam produced in the drum. The water level should have upper and lower bounds, keeping it within a certain range. Water level is too high, will affect the steam drum soda separation effect, so that the steam drum exports of saturated steam with water increased, causing damage to the turbine, will cause serious explosion. And the water level is too low, it will affect the natural circulation of the normal, serious will make the individual water pipe to form a free water, resulting in flow stagnation, resulting in local metal wall overheating and burst pipe. Water in the heating at the same time will form a lot of scale, if not the chemical treatment of water will be in the formation of scale in the drum, cleaning more difficult, so the damage to the drum. The pressure of the drum is also an important control variable, and pressure control is highly correlated with liquid level control. It is necessary to ensure the integrity of the equipment, but also to ensure safety, followed by ensuring that the process of normal operation of the drum water. This time, the design is mainly for the unit steam temperature control system design. Steam temperature is one of the important indicators of boiler operation quality. It is too high and too low will significantly affect the power plant safety and economy. If the temperature of the steam is low, it will cause the power plant to increase the heat consumption and increase the axial thrust of the turbine to cause the thrust bearing to overload, but also cause the steam turbine to increase the final steam humidity, thus reducing the efficiency of the turbine, aggravating the erosion of the blade. On the contrary, the steam temperature is too high will make the super-heater wall metal strength decreased, and even burn the high temperature of the super-heater, the steam pipe and steam turbine high-pressure part will be damaged, seriously affecting safety. The boiler temperature control system mainly includes the adjustment of the superheated steam and the reheat steam temperature. The superheated steam temperature is the highest temperature in the boiler soda system. The stability of the steam temperature is very important for the safe and economical operation of the unit. Therefore, in the boiler operation, must ensure that the steam temperature in the vicinity of the specified value, and the temperature of the super-heater tube wall does not exceed the allowable working temperature.


Author(s):  
Mohamad Abdul Hady ◽  
Mohamad Yusuf ◽  
Ali Fatoni ◽  
Imam Arifin

A control system with uncertainty or unpredictable disturbance needs more effort to be controlled. A conventional PID Controller is the most popular method used in industries. It was tuned and adjusted by the designer, and it has fixed parameters during operation. However, the disturbance effect causes the desired system performance unreachable. By using a self-tuning controller, the problem should be tackled. In this paper, the PID-Genetic Algorithm (PID-GA) controller was proposed and tested with the steam drum water level control system of a steam power plant. Variation in power load causes noisy water level characteristics and should be maintained at + 0.4 meters from the setpoint to prevent the power plant trip. From the simulation, PID-GA can reduce disturbance of the minimum, nominal, and maximum load with perturbation peaks 0.18 m, 0.22 m, and 0.26 m respectively.Keywords: genetic algorithm, NWL, PID-GA, steam drum, steam power plant.


1972 ◽  
Vol 7 (3) ◽  
pp. S15-S25
Author(s):  
Toshiho Goto ◽  
Masami Sasaki ◽  
Toshikazu Nakanishi ◽  
Tuyoshi Kadota ◽  
Yasuhiro Kanzaki

Sign in / Sign up

Export Citation Format

Share Document