Thermal Science and Engineering
Latest Publications


TOTAL DOCUMENTS

20
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

Published By Enpress Publisher

2578-1782

2019 ◽  
Vol 1 (3) ◽  
Author(s):  
Sadriten Tleukenov

Using matricant method elastic moduli of occasionally heterogeneous isotropic and anisotropic elastic media were received. Anisotropic behaviour and conditions for change in anisotropy of media associated with averaging of one-dimensional periodic structures was determined. 



2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Sushil Kumar ◽  
Rohit Chandel

Six Sigma is an organized and systematic method for strategic process improvement that relies on statistical and scientific methods to reduce the defect rates and achieve significant quality up-gradation. Six Sigma is also a business philosophy to improve customer satisfaction, a tool for eliminating process variation and errors and a metric of world class companies allowing for process comparisons.  Six Sigma is one of the most effective advanced improvement strategies having direct impact on operational excellence of an organization. Six Sigma may also be defined as the powerful business strategies, which have helped to improve quality initiatives in many industries around the world. With the use of Six Sigma in casting industries, rejection rate is reduced, customer satisfaction is improved and financial benefits also increased. Six Sigma management uses statistical process control to relentlessly and rigorously pursue the reduction of variation in all critical processes to achieve continuous and breakthrough improvements that impact the bottom-line and/or top-line of the organization and increase customer satisfaction. In this paper author reviewed some of the significant previous published papers and focused on the general overview of publication in casting industries.



2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Stanislav Victorovich Pogorelov

The resistance of platinum filament on heating to different temperatures have been measured. Measurements showed platinum wire resistivity matching to tabulated values, and therefore can be used to obtain the temperature dependence of conductors used in bolometric measurers of radiation.The results obtained make it possible to createabsolute bolometricmeasurer of continuous power and pulse energy of laser radiation.



2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Felipe Z. R Monteiro1 ◽  
Rogério N. C. Siqueira1 ◽  
Francisco J. Moura1 ◽  
Alexandre V. Grillo2

With increasing environmental concerns, much effort has been spent in research regarding development of sustainable processes for production of fuels and chemical products. In this context, hydrothermal liquefaction (HTL) has gained increasing attention, as a possible route for the chemical transformation of organic raw-materials, some sort of biomass, for example, into liquid oils at temperatures usually below 400°C, under moderate to high pressures (5 - 25 MPa), usually in the presence of a suitable catalyst. In the present work the thermogravimetric (TG) behavior under inert atmosphere of pure green coconut fiber and mixtures thereof with a spinel phase (Fe2CoO4), acting as catalyst has been studied. Spinel samples have been produced at 1000°C and different calcination times (3h, 6h and 9h). Both raw and synthesized materials were characterized  through different techniques, such as scanning electron microscopy (SEM), X-ray diffraction (XRD) and Infrared Absorption Spectroscopy (FTIR). According to the TG data, the catalyst produced during a calcination time of 9h showed a superior behavior regarding the lignin full thermal decomposition, which developed without fixed carbon formation. The results further suggest that the mixing process has a significant effect over the measured degradation kinetics, as it has a direct influence over the contact between catalyst and fibers. The kinetic modelling applied to the dynamic TG signal allowed a quantitative representation of the experimental data. The global process activation energy and order have proven to be respectively, 85.291 kJ / mol and 0.1227.



2018 ◽  
Vol 1 (4) ◽  
Author(s):  
N. G. Kokodii1,2 ◽  
A. V. Shaposhnikova1 ◽  
S. V. Pogorelov2

The effect of an anomalously large absorption of electromagnetic radiation in very thin conducting fibers was investigated. Efficiency factor of absorption can reach several hundred for a fiber with a diameter of several micrometers in the centimeter wavelength range. The effect can be used to transfer the energy of electromagnetic radiation to thin fibers without focusing radiation.



2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Ekrem Oezkaya

Helical deep hole drilling is a process frequently used in industrial applications to produce bores with a large length to diameter ratio. For better cooling and lubrication, the deep drilling oil is fed directly into the bore hole via two internal cooling channels. Due to the inaccessibility of the cutting area, experimental investigations that provide information on the actual machining and cooling behavior are difficult to carry out. In this paper, the distribution of the deep drilling oil is investigated both experimentally and simulatively and the results are evaluated. For the Computational Fluid Dynamics (CFD) simulation, two different turbulence models, i.e. the RANS k-ω-SST and hybrid SAS-SST model, are used and compared. Thereby, the actual used deep drilling oil is modelled instead of using fluid dynamic parameters of water, as is often the case. With the hybrid SAS-SST model, the flow could be analyzed much better than with the RANS k-ω-SST model and thus the processes that take place during helical deep drilling could be  simulated with realistic details. Both the experimental and the simulative results show that the deep drilling oil movement is almost exclusively generated by the tool rotation. At the tool’s cutting edges and in the flute, the flow velocity drops to zero for the most part, so that no efficient cooling and lubrication could take place there. In addition, cavitation bubbles form and implode, concluding in the assumption that the process heat is not adequately dissipated and the removal of chips is adversely affected, which in turn can affect the service life of the tool and the bore quality. The carried out investigations show that the application of CFD simulation is an important research instrument in machining technology and that there is still great potential in the area of tool and process optimization.



2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Z. Mikno

The cross wire projection welding of wires (Al 5182, =4 mm) performed using the conventional (i.e. pneumatic) electrode force system was subjected to thorough numerical analysis. Calculations were performed until one of adopted boundary conditions, i.e. maximum welding time, maximum penetration of wires, the occurrence of expulsion or the exceeding of the temperature limit in the contact between the electrode and the welded material was obtained. It was observed that the ring weld was formed within the entire range of welding parameters. The process of welding was subjected to optimisation through the application of a new electromechanical electrode force system and the use of a special hybrid algorithm of electrode force and/or displacement control. Comparative numerical calculations were performed (using SORPAS software) for both electrode force systems. Technological welding tests were performed using inverter welding machines (1 kHz) provided with various electrode force systems. The research also involved the performance of metallographic and strength (peeling) tests as well as measurements of welding process characteristic parameters (welding current and voltage).The welding process optimisation involving the use of the electromechanical force system and the application of the hybrid algorithm of force control resulted in i) more favourable space distribution of welding power, ii) energy concentration in the central zone of the weld, iii) favourable (desired) melting of the material within the entire weld transcrystallisation zone and iv) obtainment of a full weld nugget.



2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Atul Kumar1 ◽  
Srivastava Manish2

Electricity generation around the world is mainly produced by using non-renewable energy sources especially in the commercial buildings. However, Rooftop solar Photovoltaic (PV) system produced a significant impact on environmental and economical benefits in comparison to the conventional energy sources, thus contributing to sustainable development. Such PV’s system encourages the production of electricity without greenhouse gas emissions that leads to a clean alternative to fossil fuels and economic prosperity even in less developed areas. However, efficiency of rooftop solar PV systems depends on many factors, the dominant being geographical (latitude, longitude, and solar intensity), environmental (temperature, wind, humidity, pollution, dust, rain, etc.) and the type of PV (from raw material extraction and procurement, to manufacturing, disposal, and/or recycling) used. During the feasibility analysis of the environment, geographical conditions are keep in well consideration, but the pollution level of the city is always overlooked, which significantly influences the performance of the PV installations.           Therefore, this research work focused on the performance of rooftop solar PV installed in one of the most polluted city in India. Here, the loss in power generation of rooftop solar PV has been studied for the effect of deposited dust particles, wind velocity before and after the cleaning of the panels. The actual data has been utilized for the calculation of the energy efficiency and power output of the PV systems. According to the results, it has been concluded that dust deposition, wind speed and pollution level in city significantly reduces the efficiency of solar photovoltaic panel. Hence, an overview of social and environmental impacts of PV technologies is presented in this paper along with potential benefits and pitfalls.



2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Seyyed Amirhosein Hosseini1 ◽  
O. Rahmani2

The size effect on the free vibration and bending of a curved FG micro/nanobeam is studied in this paper. Using the Hamilton principle the differential equations and boundary conditions is derived for a nonlocal Euler-Bernoulli curved micro/nanobeam.  The material properties vary through radius direction. Using the Navier approach an analytical solution for simply supported boundary conditions is obtained where the power index law of FGM, the curved micro/nanobeam opening angle, the effect of aspect ratio and nonlocal parameter on natural frequencies and the radial and tangential displacements were analyzed. It is concluded that increasing the curved micro/nanobeam opening angle results in decreasing and increasing the frequencies and displacements, respectively. To validate the natural frequencies of curved nanobeam, when the radius of it approaches to infinity, is compared with a straight FG nanobeam and showed a good agreement.



2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Vasudev D. Shinde 1 ◽  
Digvijay A. Mhamane 2

In casting industries, issue of spent molding sand disposal is the origin of molding sand reclamation. Among from all reclamation concepts the thermal reclamation method is better for no-bake sand system. This study focuses on the evaluation of sand quality by considering physical and chemical characteristics of molding sand, which is reclaimed by thermal reclamation method. Electric fuel and fluidization mechanism is used in thermal reclamation system. Effect of reclamation temperature, soaking period and sand quantity on % reclamability, grain size, ADV and on LOI is investigated. The average grain size, low ADV, low LOI and acceptable % reclamability of thermally reclaimed sand are studied.



Sign in / Sign up

Export Citation Format

Share Document