scholarly journals Augmented Natriuretic Peptide-Induced Guanylyl Cyclase Activity and Vasodilation in Experimental Hyperglycemic Rats

2002 ◽  
Vol 88 (2) ◽  
pp. 167-173 ◽  
Author(s):  
Hyun Kook ◽  
JongUn Lee ◽  
Soo Wan Kim ◽  
Sang Woo Kim ◽  
Yung Hong Baik
1992 ◽  
Vol 12 (6) ◽  
pp. 2581-2590
Author(s):  
K J Koller ◽  
F J de Sauvage ◽  
D G Lowe ◽  
D V Goeddel

The natriuretic peptide receptors, NPR-A and NPR-B, are two members of the newly described class of receptor guanylyl cyclases. The kinaselike domain of these proteins is an important regulator of the guanylyl cyclase activity. To begin to understand the molecular nature of this type of regulation, we made complete and partial deletions of the kinase domain in NPR-A and NPR-B. We also made chimeric proteins in which the kinase domains of NPR-A and NPR-B were exchanged or replaced with kinase domains from structurally similar proteins. Complete deletion of the kinase homology domain in NPR-A and NPR-B resulted in constitutive activation of the guanylyl cyclase. Various partial deletions of this region produced proteins that had no ability to activate the enzyme with or without hormone stimulation. The kinase homology domain can be exchanged between the two subtypes with no effect on regulation. However, structurally similar kinaselike domains, such as from the epidermal growth factor receptor or from the heat-stable enterotoxin receptor, another member of the receptor guanylyl cyclase family, were not able to regulate the guanylyl cyclase activity correctly. These findings suggest that the kinaselike domain of NPR-A and NPR-B requires strict sequence conservation to maintain proper regulation of their guanylyl cyclase activity.


Life Sciences ◽  
2001 ◽  
Vol 69 (15) ◽  
pp. 1783-1790 ◽  
Author(s):  
A.E. Medvedev ◽  
O.Yu. Abakumova ◽  
O.V. Podobed ◽  
T.A. Tsvetkova ◽  
M. Sandler ◽  
...  

1992 ◽  
Vol 12 (6) ◽  
pp. 2581-2590 ◽  
Author(s):  
K J Koller ◽  
F J de Sauvage ◽  
D G Lowe ◽  
D V Goeddel

The natriuretic peptide receptors, NPR-A and NPR-B, are two members of the newly described class of receptor guanylyl cyclases. The kinaselike domain of these proteins is an important regulator of the guanylyl cyclase activity. To begin to understand the molecular nature of this type of regulation, we made complete and partial deletions of the kinase domain in NPR-A and NPR-B. We also made chimeric proteins in which the kinase domains of NPR-A and NPR-B were exchanged or replaced with kinase domains from structurally similar proteins. Complete deletion of the kinase homology domain in NPR-A and NPR-B resulted in constitutive activation of the guanylyl cyclase. Various partial deletions of this region produced proteins that had no ability to activate the enzyme with or without hormone stimulation. The kinase homology domain can be exchanged between the two subtypes with no effect on regulation. However, structurally similar kinaselike domains, such as from the epidermal growth factor receptor or from the heat-stable enterotoxin receptor, another member of the receptor guanylyl cyclase family, were not able to regulate the guanylyl cyclase activity correctly. These findings suggest that the kinaselike domain of NPR-A and NPR-B requires strict sequence conservation to maintain proper regulation of their guanylyl cyclase activity.


2000 ◽  
Vol 42 (5) ◽  
pp. 435-441 ◽  
Author(s):  
Hyun Kook ◽  
Soo W. Kim ◽  
Seon Y. Kang ◽  
Sung Z. Kim ◽  
Jae H. Kim ◽  
...  

2005 ◽  
Vol 288 (3) ◽  
pp. H1367-H1373 ◽  
Author(s):  
Jun Su ◽  
Qihang Zhang ◽  
Jacob Moalem ◽  
James Tse ◽  
Peter M. Scholz ◽  
...  

Increases in the myocardial level of cGMP usually exert negative inotropic effects in the mammalian hearts. We tested the hypothesis that the negative functional effects caused by nitric oxide (NO) or C-type natriuretic peptide (CNP) through cGMP would be blunted in hypertrophied cardiac myocytes. Contractile function, guanylyl cyclase activity, cGMP-dependent protein phosphorylation, and calcium transients were assessed in ventricular myocytes from aortic stenosis-induced hypertrophic and age-matched control mice. Basal percentage shortening was similar in control and hypertrophic myocytes. S-nitroso- N-acetyl-penicillamine (SNAP, an NO donor, 10−6 and 10−5 M) or CNP (10−8 and 10−7 M) reduced percentage shortening in both groups, but their effects were blunted in hypertrophic myocytes. Maximal rates of shortening and relaxation were depressed at the basal level, and both reagents had attenuated effects in hypertrophy. Similar results were also found after treatment with guanylin and carbon monoxide, other stimulators of particulate, and soluble guanylyl cyclase, respectively. Guanylyl cyclase activity was not significantly changed in hypertrophy. Addition of Rp-8-[(4-chlorophenyl)thio]-cGMPS triethylamine (an inhibitor of cGMP-dependent protein kinase, 5 × 10−6 M) blocked SNAP or the effect of CNP in control mice but not in hypertrophy, indicating the cGMP-dependent kinase (PKG) may not mediate the actions of cGMP induced by NO or CNP in the hypertrophic state. Calcium transients after SNAP or CNP were not significantly changed in hypertrophy. These results suggest that in hypertrophied mice, diminished effects of NO or CNP on ventricular myocyte contraction are not due to changes in guanylyl cyclase activity. The data also indicated that PKG-mediated pathways were diminished in hypertrophied myocardium, contributing to blunted effects.


Sign in / Sign up

Export Citation Format

Share Document