plant arabidopsis thaliana
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 45)

H-INDEX

35
(FIVE YEARS 6)

2021 ◽  
Vol 4 (4) ◽  
pp. 84
Author(s):  
Cesar Flores-Herrera ◽  
Emilia R. Gutiérrez-Mireles ◽  
Manuel Gutiérrez-Aguilar

Plant leaves present an intricate array of layers providing a robust barrier against pathogens and abiotic stressors. However, these layers may also constitute an obstacle for the assessment of intracellular processes, especially when using fluorescence microscopy approaches. Current methods for leaf mitochondrial membrane potential determinations have been traditionally performed in thin mesophyll sections, in isolated protoplasts or in fluorescent protein-expressing transgenic plants. This may limit the amount of information obtained about overall mitochondrial morphology in intact leaves. Here, we detail a fast and straightforward protocol to assess changes in leaf mitochondrial membrane potential associated with mitochondrial dysfunction in the model plant Arabidopsis thaliana. This protocol also permits mitochondrial shape, dynamics and polarity assessment in leaves subjected to diverse stress conditions.


2021 ◽  
Author(s):  
Vit Latzel ◽  
Markus Fischer ◽  
Maartje Groot ◽  
Ruben Gutzat ◽  
Christian Lampei ◽  
...  

The phenotypes of plants can be influenced by the environmental conditions experienced by their parents. In some cases, such parental effects have been found to be adaptive, which has led to much speculation about their ecological and evolutionary significance. However, there is still much uncertainty about how common and how predictable parental environmental effects really are. We carried out a comprehensive test for parental effects of different environmental stresses in the model plant Arabidopsis thaliana. We subjected plants of three Arabidopsis genotypes to a broad range of biotic or abiotic stresses, or combinations thereof, and compared their offspring phenotypes in a common environment. The majority of environmental stresses (16 out of 24 stress treatments) caused significant parental effects, in particular on plant biomass and reproduction, with positive or negative effects ranging from 35% to +38% changes in offspring fitness. The expression of parental effects was strongly genotype-dependent, with some effects only present in some genotypes but absent, or even in the opposite direction, in others. Parental effects of multiple environmental stresses were often non-additive, and their effects can thus not be predicted from what we know about the effects of individual stresses. Intriguingly, the direction and magnitude of parental effects were unrelated to the direct effects on the parents: some stresses did not affect the parents but caused substantial effects on offspring, while for others the situation was reversed. In summary, parental environmental effects are common and often strong in A. thaliana, but they are genotype-dependent and difficult to predict.


Author(s):  
Linda Jahn ◽  
Lisa Storm-Johannsen ◽  
Diana Seidler ◽  
Jasmin Noack ◽  
Wei Gao ◽  
...  

Cyanodermella asteris is a fungal endophyte from Aster tataricus, a perennial plant from the Northern part of Asia. Here, we demonstrated an interaction of C. asteris with Arabidospis thaliana, Chinese cabbage, rapeseed, tomato, maize or sunflower resulting in different phenotypes such as shorter main roots, massive lateral root growth, higher leaf and root biomass, and increased anthocyanin levels. In a variety of co-cultivation assays, it was shown that these altered phenotypes are caused by fungal CO2, volatile organic compounds, and soluble compounds, notably astins. Astins A, C and G induced plant growth when they were individually included in the medium. In return, A. thaliana stimulates the fungal astin C production during co-cultivation. Taken together, our results indicate a bilateral interaction between the fungus and the plant. A stress response in plants is induced by fungal metabolites while plant stress hormones induced astin C production of the fungus. Interestingly, our results not only show unidirectional influence of the fungus on the plant, but vice versa. The plant is able to influence growth and secondary metabolite production in the endophyte, even when both organisms do not live in close contact, suggesting the involvement of volatile compounds.


2021 ◽  
Author(s):  
Franziska Fichtner ◽  
Francois F Barbier ◽  
Stephanie C Kerr ◽  
Caitlin Dudley ◽  
Pilar Cubas ◽  
...  

Shoot branching is a complex mechanism in which secondary shoots grow from buds that are initiated from meristems established in leaf axils. The model plant Arabidopsis thaliana has a rosette leaf growth pattern in the vegetative stage. After flowering initiation, the main stem starts to elongate with the top leaf primordia developing into cauline leaves. Meristems in arabidopsis are initiated in the axils of rosette or cauline leaves, giving rise to rosette or cauline buds, respectively. Plasticity in the process of shoot branching is regulated by resource and nutrient availability as well as by plant hormones. However, few studies have attempted to test whether cauline and rosette branching are subject to the same plasticity. Here, we addressed this question by phenotyping cauline and rosette branching in three arabidopsis ecotypes and several arabidopsis mutants with varied shoot architectures. Our results show that there is no negative correlation between cauline and rosette branch numbers in arabidopsis, demonstrating that there is no trade-off between cauline and rosette bud outgrowth. Through investigation of the altered branching pattern of flowering pathway mutants and arabidopsis ecotypes grown in various photoperiods and light regimes, we further elucidated that the number of cauline branches is closely related to flowering time. The number or rosette branches has an enormous plasticity compared with cauline branches and is influenced by genetic background, flowering time, light intensity and temperature. Our data reveal different plasticity in the regulation of branching at rosette and cauline nodes and promote a framework for future branching analyses.


2021 ◽  
Author(s):  
Gonzalo Soriano ◽  
Sophie Kneeshaw ◽  
Guillermo H Jimenez-Aleman ◽  
Angel M. Zamarreno ◽  
Jose Manuel Franco-Zorrilla ◽  
...  

Jasmonates are fatty acid derived hormones that regulate multiple aspects of plant development, growth and stress responses. Bioactive jasmonates, defined as the ligands of the conserved COI1 receptor, differ between vascular plants and bryophytes (using jasmonoyl-L-isoleucine; JA-Ile and dinor-12-oxo-10,15(Z)-phytodienoic acid; dn-OPDA, respectively). Whilst the biosynthetic pathways of JA-Ile in the model vascular plant Arabidopsis thaliana have been elucidated, the details of dn-OPDA biosynthesis in bryophytes are still unclear. Here, we identify an ortholog of Arabidopsis Fatty Acid Desaturase 5 (AtFAD5) in the model liverwort Marchantia polymorpha and show that FAD5 function is ancient and conserved between species separated by more than 450 million years of independent evolution. Similar to AtFAD5, MpFAD5 is required for the synthesis of 7Z-hexadecenoic acid. Consequently, in Mpfad5 mutants the hexadecanoid pathway is blocked, dn-OPDA levels almost completely depleted and normal chloroplast development is impaired. Our results demonstrate that the main source of dn-OPDA in Marchantia is the hexadecanoid pathway and the contribution of the octadecanoid pathway, i.e. from OPDA, is minimal. Remarkably, despite extremely low levels of dn-OPDA, MpCOI1-mediated responses to wounding and insect feeding can still be activated in Mpfad5, suggesting that dn-OPDA is not the only bioactive jasmonate and COI1 ligand in Marchantia.


2021 ◽  
Vol 189 ◽  
pp. 112822
Author(s):  
Reinmar Eggers ◽  
Alexandra Jammer ◽  
Shalinee Jha ◽  
Bianca Kerschbaumer ◽  
Majd Lahham ◽  
...  

2021 ◽  
Vol 22 (16) ◽  
pp. 8441
Author(s):  
Huimin Liu ◽  
Zijin Liu ◽  
Yu Wu ◽  
Lamei Zheng ◽  
Genfa Zhang

Anthocyanins contribute to the quality and flavour of fruits. They are produced through the phenylpropanoid pathway, which is regulated by specific key genes that have been identified in many species. The dominant anthocyanin forms are reversibly transformed at different pH states, thus forming different colours in aqueous solutions. In plants, anthocyanins are controlled by specific factors of the biosynthetic pathway: light, temperature, phytohormones and transcription factors. Although great progress in research on anthocyanin structures and the regulation of anthocyanin biosynthesis has been made, the molecular regulatory mechanisms of anthocyanin biosynthesis in different plants remain less clear. In addition, the co-regulation of anthocyanin biosynthesis is poorly understood. In this review, we summarise previous findings on anthocyanin biosynthesis, including the biochemical and biological features of anthocyanins; differences in anthocyanin biosynthesis among fruit species, i.e., apple, red pear, and the model plant Arabidopsis thaliana; and the developmental and environmental regulation of anthocyanin accumulation. This review reveals the molecular mechanisms underlying anthocyanin biosynthesis in different plant species and provides valuable information for the development of anthocyanin-rich red-skinned and red-fleshed apple and pear varieties.


2021 ◽  
Author(s):  
Filipe Borges ◽  
Jonathan Huc ◽  
Katarzyna Dziasek ◽  
Kannan Pachamuthu ◽  
Tristan Woh ◽  
...  

The "triploid block" prevents interploidy hybridizations in flowering plants, and is characterized by failure in endosperm development, arrest in embryogenesis, and seed collapse. Many genetic components of triploid seed lethality have been successfully identified in the model plant Arabidopsis thaliana, most notably the paternally expressed imprinted genes (PEGs) that are up-regulated in the tetraploid endosperm with paternal excess. Previous studies have shown that the paternal epigenome is a key determinant of the triploid block response, as the loss of DNA methylation in diploid pollen suppresses the triploid block almost completely. Here, we demonstrate that triploid seed collapse is bypassed in Arabidopsis plants treated with the DNA methyltransferase inhibitor 5-Azacytidine during seed germination and early growth. We have identified strong suppressor lines showing stable transgenerational inheritance of hypomethylation in CG context, as well as normalized expression of PEGs in triploid seeds. Importantly, differentially methylated loci segregate in the progeny of "epimutagenized" plants, which may allow the identification of epialleles involved in the triploid block response in future studies. Finally, we demonstrate that chemically-induced epimutagenesis allows bypassing hybridization barriers in crosses between different Capsella species, thus potentially emerging as a novel strategy for producing triploids and interspecific hybrids with high agronomical interest.


2021 ◽  
Author(s):  
Mahideen Afridi ◽  
Khurshid Ahmad ◽  
Shahana Seher Malik ◽  
Nazia Rehman ◽  
Muhammad Yasin ◽  
...  

Abstract Background: Non-synchronized pods shattering in the Brassicaceae family bring upon huge yield losses around the world. The shattering process was validated to be controlled by eight different genes in the model plant Arabidopsis thaliana, including SHATTERPROOF1, SHATTERPROOF2, FRUITFULL, INDEHISCENT, ALCATRAZ, NAC, REPLUMLESS and POLYGlACTOURANAZE. To obtain gene family & examine their expression patterns into fresh & mature silique, then completed genome wide identification, characterization, and expression analysis of shattering genes in B. napus and B. juncea.Results: Complete genome analysis of B. napus and B. juncea revealed 32 shattering genes, which were identified and categorize based on protein motif structure, exon-intron organization and phylogeny. The phylogenetic study revealed that these shattering genes contain little duplications that were determined with a distinct chromosome number. Motifs of 32 shattering proteins were also observed where motifs 6 were found to be more conserved. A single motif was observed for other genes like BrnS7, BrnS8, BrjS23 and BrjS26. Comparative genomics for synteny analysis was performed that validated a conserved pattern of blocks among these cultivars. RT-PCR based expressions profile showed higher expression of shattering genes in B. juncea as compared to B. napus. FUL gene was expressed more in the mature silique. ALC gene was not expressed in the fresh silique of B. napus but highly expressed in the mature silique. Conclusion: This study authenticates that shattering genes exist in the local cultivars of Brassica. ALC exhibited strong expression in both the mature and fresh silique of B. juncea. Our results showed that shattering genes expression occurred more in B. juncea as compared to B. napus. It also contributes to the screening of more candidate gene for further investigation and characterization.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1087
Author(s):  
Rafael Ruiz-Partida ◽  
Sttefany M. Rosario ◽  
Jorge Lozano-Juste

The hormone abscisic acid (ABA) orchestrates the plant stress response and regulates sophisticated metabolic and physiological mechanisms essential for survival in a changing environment. Plant ABA receptors were described more than 10 years ago, and a considerable amount of information is available for the model plant Arabidopsis thaliana. Unfortunately, this knowledge is still very limited in crops that hold the key to feeding a growing population. In this review, we summarize genomic, genetic and structural data obtained in crop ABA receptors. We also provide an update on ABA perception in major food crops, highlighting specific and common features of crop ABA receptors.


Sign in / Sign up

Export Citation Format

Share Document