myoblast cells
Recently Published Documents


TOTAL DOCUMENTS

251
(FIVE YEARS 89)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Cheng Cheng ◽  
Lan Weiss ◽  
Henri Leinonen ◽  
Alyaa Shmara ◽  
Hong Z. Yin ◽  
...  

Abstract Background Pathogenic gain of function variants in Valosin-containing protein (VCP) cause a unique disease characterized by inclusion body myopathy with early-onset Paget disease of bone and frontotemporal dementia (also known as Multisystem proteinopathy (MSP)). Previous studies in drosophila models of VCP disease indicate treatment with VCP inhibitors mitigates disease pathology. Earlier-generation VCP inhibitors display off-target effects and relatively low therapeutic potency. New generation of VCP inhibitors needs to be evaluated in a mouse model of VCP disease. In this study, we tested the safety and efficacy of a novel and potent VCP inhibitor, CB-5083 using VCP patient-derived myoblast cells and an animal model of VCP disease. Methods First, we analyzed the effect of CB-5083 in patient-derived myoblasts on the typical disease autophagy and TDP-43 profile by Western blot. Next, we determined the maximum tolerated dosage of CB-5083 in mice and treated the 2-month-old VCPR155H/R155H mice for 5 months with 15 mg/kg CB-5083. We analyzed motor function monthly by Rotarod; and we assessed the end-point blood toxicology, and the muscle and brain pathology, including autophagy and TDP-43 profile, using Western blot and immunohistochemistry. We also treated 12-month-old VCPR155H/+ mice for 6 months and performed similar analysis. Finally, we assessed the potential side effects of CB-5083 on retinal function, using electroretinography in chronically treated VCPR155H/155H mice. Results In vitro analyses using patient-derived myoblasts confirmed that CB-5083 can modulate expression of the proteins in the autophagy pathways. We found that chronic CB-5083 treatment is well tolerated in the homozygous mice harboring patient-specific VCP variant, R155H, and can ameliorate the muscle pathology characteristic of the disease. VCP-associated pathology biomarkers, such as elevated TDP-43 and p62 levels, were significantly reduced. Finally, to address the potential adverse effect of CB-5083 on visual function observed in a previous oncology clinical trial, we analyzed retinal function in mice treated with moderate doses of CB-5083 for 5 months and documented the absence of permanent ocular toxicity. Conclusions Altogether, these findings suggest that long-term use of CB-5083 by moderate doses is safe and can improve VCP disease-associated muscle pathology. Our results provide translationally relevant evidence that VCP inhibitors could be beneficial in the treatment of VCP disease.


Biomimetics ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 2
Author(s):  
Rodi Abdalkader ◽  
Satoshi Konishi ◽  
Takuya Fujita

Human skeletal muscles are characterized by a unique aligned microstructure of myotubes which is important for their function as well as for their homeostasis. Thus, the recapitulation of the aligned microstructure of skeletal muscles is crucial for the construction of an advanced biomimetic model aimed at drug development applications. Here, we have developed a 3D printed micropatterned microfluid device (3D-PMMD) through the employment of a fused deposition modeling (FDM)-based 3D printer and clear filaments made of biocompatible polyethylene terephthalate glycol (PETG). We could fabricate micropatterns through the adjustment of the printing deposition heights of PETG filaments, leading to the generation of aligned half-cylinder-shaped micropatterns in a dimension range from 100 µm to 400 µm in width and from 60 µm to 150 µm in height, respectively. Moreover, we could grow and expand C2C12 mouse myoblast cells on 3D-PMMD where cells could differentiate into aligned bundles of myotubes with respect to the dimension of each micropattern. Furthermore, our platform was applicable with the electrical pulses stimulus (EPS) modality where we noticed an improvement in myotubes maturation under the EPS conditions, indicating the potential use of the 3D-PMMD for biological experiments as well as for myogenic drug development applications in the future.


2021 ◽  
pp. 1-27
Author(s):  
Qi Hao ◽  
Lulu Wang ◽  
Minghui Zhang ◽  
Zhe Wang ◽  
Meng Li ◽  
...  

Abstract Taurine (Tau) has many profound physiological functions, but its role and molecular mechanism in muscle cells are still not fully understood. In this study, we investigated the role and underlying molecular mechanism of Tau on protein synthesis and proliferation of C2C12 myoblast cells. Cells were treated with Tau (0, 60, 120, 180 and 240 μM) for 24 h. Tau dose-dependently promoted protein synthesis, cell proliferation, mTOR phosphorylation, and also AT-rich interaction domain 4B (ARID4B) expression, with the best stimulatory effects at 120 μM. LY 294002 treatment showed that Tau promoted ARID4B expression in a PI3K-dependent manner. ARID4B knockdown (by siRNA transfection for 24 h) prevented Tau from stimulating protein synthesis and cell proliferation, whereas ARID4B gene activation (using the CRISPR/dCas9 technology) had stimulatory effects. ARID4B knockdown abolished Tau signaling to mRNA expression and protein phosphorylation of mTOR, whereas ARID4B gene activation had stimulatory effects. ChIP-PCR identified that all of ARID4B, H3K27ac and H3K27me3 bound to the -4368∼-4591 bp site in the mTOR promoter, and ChIP-qPCR further detected that Tau stimulated ARID4B binding to this site. ARID4B knockdown or gene activation did not affect H3K27me3 binding to the mTOR promoter, but decreased or increased H3K27ac binding, respectively. Furthermore, ARID4B knockdown abolished the stimulation of Tau on H3K27ac binding to the mTOR promoter. In summary, these data uncover that Tau promotes protein synthesis and proliferation of C2C12 myoblast cells through the PI3K-ARID4B-mTOR pathway, providing a deep understanding how Tau regulates anabolism in muscle cells.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 689-689
Author(s):  
Bachkhoa Nguyen ◽  
Fathima Ameer ◽  
Jasmine Crane ◽  
Gohar Azhar ◽  
Xiaomin Zhang ◽  
...  

Abstract CCG-1423 is a Rho A pathway inhibitor which has been reported to inhibit Rho/SRF-mediated transcriptional regulation. SRF and SRF cofactors, which include ternary complex factors (TCFs) and myocardin-related transcription factor (MRTF), regulate various cellular functions. The Rho/SRF signaling pathway also regulates the sirtuin 2 (SIRT2) gene that contains a classic serum response element (SRE) sequence. Current research on CCG-1423 focuses on gene expression levels of SRF in response to CCG-1423 and how SRF levels affect the cells; the studies are focused on cell morphology, migration, viability/reproduction, and overall function. The pathways of this inhibitor have yet to be fully elucidated, but several have been suggested with good evidence. Our goal is to study the effect of CCG-1423 on mitochondrial function and gene expression of cells. In this work C2C12 myoblast cells have been used as an in-vitro model to study cellular bioenergetics and variations in gene expressions induced by CCG-1423. The effect of CCG-1423 on mitochondrial function was determined by measuring the mitochondrial oxygen consumption rate and glycolysis rate after treating C2C12 cells with varying concentrations of CCG-1423 overnight. In C2C12 myoblast cells, CCG-1423 treatment significantly reduced mitochondrial oxygen consumption rate (OCR) in a dose-dependent manner. However, treatment of C2C12 cells with CCG-1423 overnight increased the extracellular acidification rate (ECAR) in a dose-dependent manner. By indicating that CCG-1423 represses mitochondrial respiration via the Rho-SRF signaling pathway, the results of this study may enable a better understanding of the bioenergetics of the cell in the aging body.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Yanjie Tan ◽  
Yi Jin ◽  
Pengxiang Zhao ◽  
Jian Wu ◽  
Zhuqing Ren

AbstractLipid droplet (LD), a multi-functional organelle, is found in most eukaryotic cells. LDs participate in the regulation of many cellular processes including proliferation, stress, and apoptosis. Previous studies showed the athlete’s paradox that trained athletes accumulate LDs in their skeletal muscle. However, the impact of LDs on skeletal muscle and myogenesis is not clear. We discovered that C2C12 myoblast cells containing more LDs formed more multinucleated muscle fibers. We also discovered that LDs promoted cell migration and fusion by promoting actin-filaments remodeling. Mechanistically, two LD-proteins, Acyl-CoA synthetase long chain family member 3 (ACSL3) and lysophosphatidylcholine acyltransferase 1 (LPCAT1), medicated the recruitment of actinin proteins which contributed to actin-filaments formation on the surface of LDs. During remodeling, the actinin proteins on LDs surface translocated to actin-filaments via ARF1/COPI vesicles. Our study demonstrate LDs contribute to cell differentiation, which lead to new insight into the LD function.


2021 ◽  
Author(s):  
Hong-Shi Li ◽  
Jiang-Ying Kuang ◽  
Gui-Jun Liu ◽  
Wei-Jie Wu ◽  
Xian-Lun Yin ◽  
...  

Abstract Obesity, as one of the major public health problems in the world, has attracted more and more attention. Rb1 is the most abundant active component of Panax ginseng and it has been reported to have benefit effects on obesity and diabetes. But the mechanisms of Rb1 in regulation of obesity are not very clear. In this study, by use of obese mice, we found that Rb1 not only reduced body weight but also decreased myostain (MSTN) expression,which plays a vital part in the regulation of obesity. In vitro, we found that Rb1 treatment also decreased MSTN expression in differentiated C2C12 cells (Myoblast cells) and 3T3-L1 cells (adipocytes). Fndc5, as the downstream of MSTN, was increased after Rb1 treatment. ConclusionsOur results showed that Rb1 may ameliorate obesity in part through MSTN/Fndc5 signaling pathway. Our study provides important experimental evidences for the treatment of obesity by Rb1.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6571
Author(s):  
Tina Batista Napotnik ◽  
Damijan Miklavčič

Electroporation (EP) is one of the successful physical methods for intracellular drug delivery, which temporarily permeabilizes plasma membrane by exposing cells to electric pulses. Orientation of cells in electric field is important for electroporation and, consequently, for transport of molecules through permeabilized plasma membrane. Uptake of molecules after electroporation are the greatest at poles of cells facing electrodes and is often asymmetrical. However, asymmetry reported was inconsistent and inconclusive—in different reports it was either preferentially anodal or cathodal. We investigated the asymmetry of polar uptake of calcium ions after electroporation with electric pulses of different durations, as the orientation of elongated cells affects electroporation to a different extent when using electric pulses of different durations in the range of 100 ns to 100 µs. The results show that with 1, 10, and 100 µs pulses, the uptake of calcium ions is greater at the pole closer to the cathode than at the pole closer to the anode. With shorter 100 ns pulses, the asymmetry is not observed. A different extent of electroporation at different parts of elongated cells, such as muscle or cardiac cells, may have an impact on electroporation-based treatments such as drug delivery, pulse-field ablation, and gene electrotransfection.


2021 ◽  
Author(s):  
Karl Kam Hei So ◽  
Yile Huang ◽  
Suyang Zhang ◽  
Liangqiang He ◽  
Yuying Li ◽  
...  

Muscle satellite cells (SCs) are responsible for muscle homeostasis and regeneration; and lncRNAs play important roles in regulating SC activities. Here in this study, we identify PAM-1 (Pax7 Associated Muscle lncRNA) that is induced in activated SCs to promote SC activation into myoblast cells upon injury. PAM-1 is generated from a myoblast specific super-enhancer (SE); as a seRNA it binds with a number of target genomic loci predominantly in trans. Further studies demonstrate that it interacts with Ddx5 to tether PAM-1 SE to it inter-chromosomal targets Timp2 and Vim to activate the gene expression. Lastly, we show that PAM-1 expression is increased in aging SCs, which leads to enhanced inter-chromosomal interaction and target genes up-regulation. Altogether, our findings identify PAM-1 as a previously unknown lncRNA that regulates both SC activation and aging through its trans gene regulatory activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rakan Naboulsi ◽  
Mårten Larsson ◽  
Leif Andersson ◽  
Shady Younis

AbstractThe expression of Igf2 in mammals shows a complex regulation involving multiple promoters and epigenetic mechanisms. We previously identified a novel regulatory mechanism based on the interaction between the transcriptional factor ZBED6 and Igf2 intron. Disruption of the ZBED6-Igf2 interaction leads to a dramatic up-regulation of IGF2 expression postnatally. In the current study we characterize an additional layer of regulation involving miR483 encoded by another Igf2 intron. We found a highly significant up-regulation of miR483 expression when the ZBED6-Igf2 axis is disrupted in transgenic mice. Furthermore, CRISPR/Cas9 mediated knock-out of miR483 in C2C12 myoblast cells, both wild-type and cells with disrupted ZBED6-Igf2 axis (Igf2dGGCT), resulted in down-regulation of Igf2 expression and a reduced proliferation rate. This was further validated using miR483 mimics and inhibitors. RNA-seq analysis revealed a significant enrichment of genes involved in the PI3K-Akt signaling pathway among genes down-regulated in miR483−/− cells, including Igf2 down-regulation. The opposite pattern was observed in Igf2dGGCT cells, where Igf2 is up-regulated. Our data suggest a positive feedback between miR483 and Igf2 promoter activity, strongly affecting how ZBED6 controls Igf2 expression in various cell types.


Sign in / Sign up

Export Citation Format

Share Document