Digital transmission of 12-lead electrocardiograms and duplex speech in the telephone bandwidth

1996 ◽  
Vol 2 (1) ◽  
pp. 42-49 ◽  
Author(s):  
J J Mckee ◽  
N E Evans ◽  
F J Owens

Summary A system was developed which allowed the simultaneous communication of digitized, full duplex speech and electrocardiography ECG signals in realtime. A single band-limited channel was used over a standard telephone line providing 3 kHz bandwidth. The full duplex speech was compressed to 2400 bit s using linear predictive coding, while multiple ECG signals were processed by a novel ECG compression technique. Extensive use of digital signal processing reduced the combined bit rate to less than 9600 bit s, allowing the use of lowcost commercial modems. The ECG communications system was tested in clinical trials. It enabled a hospitalbased clinician to provide diagnostic and treatment advice to a remote location over the standard telephone network.

Author(s):  
Dian Ahkam Sani ◽  
Muchammad Saifulloh

The development of science and technology is one way to replace the method of human interaction with computers, one of which is to provide voice input. Conversion of sound into text form with the Backpropagation method can be understood and realized through feature extraction, including the use of Linear Predictive Coding (LPC). Linear Predictive Coding is one way to represent the signal in obtaining the features of each sound pattern. In brief, the way this speech recognition system worked was by inputting human voice through a microphone (analog signal) which then sampled with a sampling speed of 8000 Hz so that it became a digital signal with the assistance of sound card on the computer. The digital signal from the sample then entered the initial process using LPC, so that several LPC coefficients were obtained. The LPC outputs were then trained using the Backpropagation learning method. The results of the learning were classified with a word and stored in a database afterwards. The results of the test were in the form of an introduction program that able display the voice plots. the results of speech recognition with voice recognition percentage of respondents in the database iss 80% of the 100 data in the test in Real Time


2020 ◽  
Vol 7 (6) ◽  
pp. 1177
Author(s):  
Siti Helmiyah ◽  
Imam Riadi ◽  
Rusydi Umar ◽  
Abdullah Hanif ◽  
Anton Yudhana ◽  
...  

<p class="Abstrak">Ucapan merupakan sinyal yang memiliki kompleksitas tinggi terdiri dari berbagai informasi. Informasi yang dapat ditangkap dari ucapan dapat berupa pesan terhadap lawan bicara, pembicara, bahasa, bahkan emosi pembicara itu sendiri tanpa disadari oleh si pembicara. Speech Processing adalah cabang dari pemrosesan sinyal digital yang bertujuan untuk terwujudnya interaksi yang natural antar manusia dan mesin. Karakteristik emosional adalah fitur yang terdapat dalam ucapan yang membawa ciri-ciri dari emosi pembicara. Linear Predictive Coding (LPC) adalah sebuah metode untuk mengekstraksi ciri dalam pemrosesan sinyal. Penelitian ini, menggunakan LPC sebagai ekstraksi ciri dan Metode Euclidean Distance untuk identifikasi emosi berdasarkan ciri yang didapatkan dari LPC.  Penelitian ini menggunakan data emosi marah, sedih, bahagia, netral dan bosan. Data yang digunakan diambil dari Berlin Emo DB, dengan menggunakan tiga kalimat berbeda dan aktor yang berbeda juga. Penelitian ini menghasilkan akurasi pada emosi sedih 58,33%, emosi netral 50%, emosi marah 41,67%, emosi bahagia 8,33% dan untuk emosi bosan tidak dapat dikenali. Penggunaan Metode LPC sebagai ekstraksi ciri memberikan hasil yang kurang baik pada penelitian ini karena akurasi rata-rata hanya sebesar 31,67% untuk identifikasi semua emosi. Data suara yang digunakan dengan kalimat, aktor, umur dan aksen yang berbeda dapat mempengaruhi dalam pengenalan emosi, maka dari itu ekstraksi ciri dalam pengenalan pola ucapan emosi manusia sangat penting. Hasil akurasi pada penelitian ini masih sangat kecil dan dapat ditingkatkan dengan menggunakan ekstraksi ciri yang lain seperti prosidis, spektral, dan kualitas suara, penggunaan parameter <em>max, min, mean, median, kurtosis dan skewenes.</em> Selain itu penggunaan metode klasifikasi juga dapat mempengaruhi hasil pengenalan emosi.</p><p class="Judul2" align="left"> </p><p class="Judul2"><strong><em>Abstract</em></strong></p><p class="Abstrak"><em>Speech is a signal that has a high complexity consisting of various information. Information that can be captured from speech can be in the form of messages to interlocutor, the speaker, the language, even the speaker's emotions themselves without the speaker realizing it. Speech Processing is a branch of digital signal processing aimed at the realization of natural interactions between humans and machines. Emotional characteristics are features contained in the speech that carry the characteristics of the speaker's emotions. Linear Predictive Coding (LPC) is a method for extracting features in signal processing. This research uses LPC as a feature extraction and Euclidean Distance Method to identify emotions based on features obtained from LPC. This study uses data on emotions of anger, sadness, happiness, neutrality, and boredom. The data used was taken from Berlin Emo DB, using three different sentences and different actors. This research resulted in inaccuracy in sad emotions 58.33%, neutral emotions 50%, angry emotions 41.67%, happy emotions 8.33% and bored emotions could not be recognized. The use of the LPC method as feature extraction gave unfavorable results in this study because the average accuracy was only 31.67% for the identification of all emotions. Voice data used with different sentences, actors, ages, and accents</em><em> </em><em>can influence the recognition of emotions, therefore the extraction of features in the recognition of speech patterns of human emotions is very important. Accuracy results in this study are still very small and can be improved by using other feature extractions such as provides, spectral, and sound quality, using parameters max, min, mean, median, kurtosis, and skewness. Besides the use of classification methods can also affect the results of emotional recognition.</em></p><p class="Abstrak"> </p>


2019 ◽  
pp. 34-39 ◽  
Author(s):  
E.I. Chernov ◽  
N.E. Sobolev ◽  
A.A. Bondarchuk ◽  
L.E. Aristarhova

The concept of hidden correlation of noise signals is introduced. The existence of a hidden correlation between narrowband noise signals isolated simultaneously from broadband band-limited noise is theoretically proved. A method for estimating the latent correlation of narrowband noise signals has been developed and experimentally investigated. As a result of the experiment, where a time frag ent of band-limited noise, the basis of which is shot noise, is used as the studied signal, it is established: when applying the Pearson criterion, there is practically no correlation between the signal at the Central frequency and the sum of signals at mirror frequencies; when applying the proposed method for the analysis of the same signals, a strong hidden correlation is found. The proposed method is useful for researchers, engineers and metrologists engaged in digital signal processing, as well as developers of measuring instruments using a new technology for isolating a useful signal from noise – the method of mirror noise images.


2020 ◽  
Vol 6 (s1) ◽  
Author(s):  
Tyler Kendall ◽  
Charlotte Vaughn

AbstractThis paper contributes insight into the sources of variability in vowel formant estimation, a major analytic activity in sociophonetics, by reviewing the outcomes of two simulations that manipulated the settings used for linear predictive coding (LPC)-based vowel formant estimation. Simulation 1 explores the range of frequency differences obtained when minor adjustments are made to LPC settings, and measurement timepoints around the settings used by trained analysts, in order to determine the range of variability that should be expected in sociophonetic vowel studies. Simulation 2 examines the variability that emerges when LPC settings are varied combinatorially around constant default settings, rather than settings set by trained analysts. The impacts of different LPC settings are discussed as a way of demonstrating the inherent properties of LPC-based formant estimation. This work suggests that differences more fine-grained than about 10 Hz in F1 and 15–20 Hz in F2 are within the range of LPC-based formant estimation variability.


2017 ◽  
Vol 24 (2) ◽  
pp. 17-26
Author(s):  
Mustafa Yagimli ◽  
Huseyin Kursat Tezer

Abstract The real-time voice command recognition system used for this study, aims to increase the situational awareness, therefore the safety of navigation, related especially to the close manoeuvres of warships, and the courses of commercial vessels in narrow waters. The developed system, the safety of navigation that has become especially important in precision manoeuvres, has become controllable with voice command recognition-based software. The system was observed to work with 90.6% accuracy using Mel Frequency Cepstral Coefficients (MFCC) and Dynamic Time Warping (DTW) parameters and with 85.5% accuracy using Linear Predictive Coding (LPC) and DTW parameters.


Sign in / Sign up

Export Citation Format

Share Document