scholarly journals Nitrogenous Chemicals from Carbon Based Materials

2005 ◽  
Vol 23 (3) ◽  
pp. 215-224 ◽  
Author(s):  
M. Fatih Demirbas

Coal and biomass consist carbon-based materials can be used as a source of chemicals. There are four widespread processes allow for making chemicals from coals and biomass: Gasification, liquefaction, direct conversion, and co-production of chemicals and fuels along with electricity. The carbon-based materials are gasified to produce synthesis gas (syngas) with a gasifier which is then converted to parafinic liquid fuels and chemicals by Fischer-Trops synthesis. The humus substances can be recovered from brown coal by alkali extraction. Ammonium sulfate from coal tar by pyrolysis can be converted to ammonia. Nitrogenous biomass materials such as animal and municipal wastes are nitrogen-rich materials. All natural systems include ammonia concentrations below 2 ppm.

Catalysis ◽  
2007 ◽  
pp. 183-228 ◽  
Author(s):  
R. D. Srivastave ◽  
P. Zhou ◽  
G. J. Stiegel ◽  
V. U. S. Rao ◽  
G. Cinquegrane

Reactions ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 130-146
Author(s):  
Yali Yao ◽  
Baraka Celestin Sempuga ◽  
Xinying Liu ◽  
Diane Hildebrandt

In order to explore co-production alternatives, a once-through process for CO2 hydrogenation to chemicals and liquid fuels was investigated experimentally. In this approach, two different catalysts were considered; the first was a Cu-based catalyst that hydrogenates CO2 to methanol and CO and the second a Fisher–Tropsch (FT) Co-based catalyst. The two catalysts were loaded into different reactors and were initially operated separately. The experimental results show that: (1) the Cu catalyst was very active in both the methanol synthesis and reverse-water gas shift (R-WGS) reactions and these two reactions were restricted by thermodynamic equilibrium; this was also supported by an Aspen plus simulation of an (equilibrium) Gibbs reactor. The Aspen simulation results also indicated that the reactor can be operated adiabatically under certain conditions, given that the methanol reaction is exothermic and R-WGS is endothermic. (2) the FT catalyst produced mainly CH4 and short chain saturated hydrocarbons when the feed was CO2/H2. When the two reactors were coupled in series and the presence of CO in the tail gas from the first reactor (loaded with Cu catalyst) significantly improves the FT product selectivity toward higher carbon hydrocarbons in the second reactor compared to the standalone FT reactor with only CO2/H2 in the feed.


Author(s):  
Heuntae Jo ◽  
Muhammad Kashif Khan ◽  
Muhammad Irshad ◽  
Malik Waqar Arshad ◽  
Seok Ki Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document