Reactions
Latest Publications


TOTAL DOCUMENTS

49
(FIVE YEARS 48)

H-INDEX

1
(FIVE YEARS 1)

Published By Mdpi Ag

2624-781x

Reactions ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 70-86
Author(s):  
Yassir Al-Jawaheri ◽  
Marc Colin Kimber

1,3-Dienes are vital building blocks in organic synthesis. They underpin many fundamental synthetic transformations and are present in numerous natural products and drug candidate molecules. The rearrangement of an alkylallene to a 1,3-diene is an atom efficient, redox neutral, transformation that provides a straightforward synthetic route to functionalized 1,3-dienes. Herein, we provide an account of this transformation using allenes that are not predisposed by the presence of heteroatoms or electron-withdrawing groups directly attached to the allene. Early reports of this skeletal rearrangement are acid-mediated approaches, with limited substrate scope, but they provide valuable mechanistic insights. More recent transition metal-mediated approaches that exhibit improved substrate scope are described, together with isolated examples that have utilized this rearrangement.


Reactions ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 59-69
Author(s):  
Natalie M. Lind ◽  
Natalie S. Joe ◽  
Brian S. Newell ◽  
Aimee M. Morris

Synthetic access to poly(indazolyl)methanes has limited their study despite their structural similarity to the highly investigated chelating poly(pyrazolyl)methanes and their potentially important indazole moiety. Herein is presented a high yielding, one-pot synthesis for the 3d-metal catalyzed formation of bis(1H-indazol-1-yl)methane from 1H-indazole utilizing dimethylsulfoxide as the methylene source. Complete characterization of bis(1H-indazol-1-yl)methane is given with 1H and 13C NMR, UV/Vis, FTIR, high resolution mass spectrometry and for the first time, single crystal X-ray diffraction. This simple, inexpensive pathway to yield exclusively bis(1H-indazol-1-yl)methane provides synthetic access to further investigate the coordination and potential applications of the family of bis(indazolyl)methanes.


Reactions ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 47-58
Author(s):  
Sarah Tschirner ◽  
Eric Weingart ◽  
Linda Teevs ◽  
Ulf Prüße

In this work, a highly selective and active gold-based catalyst for the oxidation of high concentrated monoethylene glycol (MEG) in aqueous solution (3 M, 20 wt%) is described. High glycolic acid (GA) selectivity was achieved under mild reaction conditions. The optimization of the catalyst composition and of the reaction conditions for the oxidation of MEG in semi-batch mode under alkaline conditions led to a GA yield of >80% with a GA selectivity of about 90% in short reaction time. The bimetallic catalyst 0.1 wt% AuPt (9:1)/CeO2 showed very high activity (>2000 mmolMEG/gmetalmin) in the oxidation of MEG and, contrary to other studies, an extremely high educt to metal mole ratio of >25,000 was used. Additionally, the gold–platinum catalyst showed a high GA selectivity over more than 10 runs. A very efficient and highly selective process for the GA production from MEG under industrial relevant reaction conditions was established. In order to obtain a GA solution with high purity for the subsequent polymerization, the received reaction solution containing sodium glycolate, unreacted MEG and sodium oxalate is purified by a novel down-stream process via electrodialysis. The overall GA yield of the process exceeds 90% as unreacted MEG can be recycled.


Reactions ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 30-46
Author(s):  
Léa Vilcocq ◽  
Agnès Crepet ◽  
Patrick Jame ◽  
Florbela Carvalheiro ◽  
Luis C. Duarte

Three different types of biomass sourced from forestry waste (eucalyptus residues), agricultural waste (wheat straw), and energy crop (miscanthus) were used as starting materials to produce hemicellulosic sugars, furans (furfural and hydroxymethylfurfural), and oligosaccharides. A two-step hybrid process was implemented; biomass was first autohydrolysed without any additive to extract hemicelluloses and dissolve it in water. Then, the hydrolysate was treated with a solid acid catalyst, TiO2-WOx, in order to achieve hydrolysis and produce monomeric sugars and furans. This article investigates the role of the biomass type, autohydrolysis experimental conditions, polymerisation degree and composition of hemicelluloses on the performance of the process coupling autohydrolysis and catalytic hydrolysis. The highest global yields of both oligosaccharides and monomeric sugars were obtained from Eucalyptus (37% and 18%, respectively).


Reactions ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 1-11
Author(s):  
Oleg Manaenkov ◽  
Yuriy Kosivtsov ◽  
Valentin Sapunov ◽  
Olga Kislitsa ◽  
Mikhail Sulman ◽  
...  

Despite numerous works devoted to the cellulose hydrogenolysis process, only some of them describe reaction kinetics. This is explained by the complexity of the process and the simultaneous behavior of different reactions. In this work, we present the results of the kinetic study of glucose hydrogenolysis into ethylene- and propylene glycols in the presence of Ru@Fe3O4/HPS catalyst as a part of the process of catalytic conversion of cellulose into glycols. The structure of the Ru-containing magnetically separable Ru@Fe3O4/HPS catalysts supported on the polymeric matrix of hypercrosslinked polystyrene was studied to propose the reaction scheme. As a result of this study, a formal description of the glucose hydrogenolysis process into glycols was performed. Based on the data obtained, the mathematical model of the glucose hydrogenolysis kinetics in the presence of Ru@Fe3O4/HPS was developed and the parameter estimation was carried out. The synthesized catalyst was found to be characterized by the enhanced magnetic properties and higher catalytic activity in comparison with previously developed catalytic systems (i.e., on the base of SiO2). The summarized selectivity towards the glycols formation was found to be ca. 42% at 100% of the cellulose conversion in the presence of Ru@Fe3O4/HPS.


Reactions ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 12-29
Author(s):  
Dhruba P. Poudel ◽  
Richard T. Taylor

The construction of well-defined polyurethane dendrimers is challenging due to the high reactivity of externally added or in situ formed isocyanates leading to the formation of side products. With a primary focus of dendrimer research being the interaction of the periphery and the core, we report the synthesis of a common polyurethane dendron, which allows for the late-stage variation of both the periphery and the core. The periphery can be varied simply by installing a clickable unit in the dendron and then attaching to the core and vice-versa. Thus, a common dendron allows for varying periphery and core in the final two steps. To accomplish this, a protecting group-free, one-pot multicomponent Curtius reaction was utilized to afford a robust and versatile AB2 type polyurethane dendron employing commercially available simple molecules: 5-hydroxyisophthalic acid, 11-bromoundecanol, and 4-penten-1-ol. Subsequent late-stage modifications of either dendrons or dendrimers via a thiol-ene click reaction gave surface-functionalized alternating aromatic-aliphatic polyurethane homodendrimers to generation-three (G3). The dendrons and the dendrimers were characterized by NMR, mass spectrometry, and FT-IR analysis. A bifunctional AB2 type dendritic monomer demonstrated this approach’s versatility that can either undergo a thiol-ene click or attachment to the core. This approach enables the incorporation of functionalities at the periphery and the core that may not withstand the dendrimer growth for the synthesis of polyurethane dendrimers and other dendritic macromolecules.


Reactions ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 499-513
Author(s):  
Eleni-Stavroula Vastaroucha ◽  
Sofia Maina ◽  
Savvoula Michou ◽  
Ourania Kalantzi ◽  
Chrysanthi Pateraki ◽  
...  

The utilization of crude glycerol, generated as a by-product from the biodiesel production process, for the production of high value-added products represents an opportunity to overcome the negative impact of low glycerol prices in the biodiesel industry. In this study, the biochemical behavior of Yarrowia lipolytica strains FMCC Y-74 and FMCC Y-75 was investigated using glycerol as a carbon source. Initially, the effect of pH value (3.0–7.0) was examined to produce polyols, intracellular lipids, and polysaccharides. At low pH values (initial pH 3.0–5.0), significant mannitol production was recorded. The highest mannitol production (19.64 g L−1) was obtained by Y. lipolytica FMCC Y-74 at pH = 3.0. At pH values ranging between 5.0 and 6.0, intracellular polysaccharides synthesis was favored, while polyols production was suppressed. Subsequently, the effect of crude glycerol and its concentration on polyols production was studied. Y. lipolytica FMCC Y-74 showed high tolerance to impurities of crude glycerol. Initial substrate concentrations influence polyols production and distribution with a metabolic shift toward erythritol production being observed when the initial glycerol concentration (Gly0) increased. The highest total polyols production (=56.64 g L−1) was obtained at Gly0 adjusted to ≈120 g L−1. The highest polyols conversion yield (0.59 g g−1) and productivity (4.36 g L−1 d−1) were reached at Gly0 = 80 g L−1. In fed-batch intermittent fermentation with glycerol concentration remaining ≤60 g L−1, the metabolism was shifted toward mannitol biosynthesis, which was the main polyol produced in significant quantities (=36.84 g L−1) with a corresponding conversion yield of 0.51 g g−1.


Reactions ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 486-498
Author(s):  
Eva Vrbková ◽  
Adéla Šímová ◽  
Eliška Vyskočilová ◽  
Miloslav Lhotka ◽  
Libor Červený

Acid-treated montmorillonites (MMT) were used as catalysts of carvone isomerization to carvacrol. Mineral acids—sulfuric, hydrochloric, nitric acids and organic acids (acetic and chloroacetic)—were used for the acid treatment. Prepared materials were characterized by available characterization methods, namely XRD, EA, TPD, TPO, UV-Vis, laser light scattering and nitrogen physisorption. The structure of montmorillonite remained intact after treatment. However, TPD proved the increase of acidity of acid-treated materials comparing pure montmorillonite. All materials were tested in the isomerization of carvone, producing carvacrol as the desired product. The initial reaction rate increased using the materials in the row MMT-COOH < MMT-HNO3 < MMT-ClCOOH < MMT-H2SO4 < MMT-HCl, which is in accordance with the pKa of acids used for the treatment. The number of weak acid sites strongly influenced the selectivity to carvacrol. The optimal solvent for the reaction was toluene. Total conversion of carvone and the selectivity to carvacrol 95.5% was achieved within 24 h under 80 °C, with toluene as solvent and montmorillonite treated by chloroacetic acid as catalyst. The catalyst may be reused after calcination with only a low loss of activity.


Reactions ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 473-485
Author(s):  
Felipe Wasem Klein ◽  
Jean-Philippe Lamps ◽  
Matthieu Paillet ◽  
Pierre Petit ◽  
Philippe J. Mésini

The functionalization of carbon nanotubes by polymers necessitates two steps, first their modification by oxidizing them or by covalently attaching small compounds to them, then the growth of the polymer chains from these anchors or their grafting onto them. In order to better control the process and the rate of functionalization, we develop polymers able to covalently react with the carbon nanotubes by their side chains in one step. We describe the synthesis of a copolymer of dodecylthiophene and its analogue bearing an aniline group at the end of the dodecyl side chain. This copolymer can functionalize single-walled carbon nanotubes (SWNTs) non-covalently and disperse more SWNTs than its hexyl analogues. UV-Vis and fluorescence spectroscopies show that in these non-covalent hybrids, the polymer forms p-stacked aggregates on the SWNTs. The non-covalent hybrids can be transformed into covalent ones by diazonium coupling. In these covalent hybrids the polymer is no longer p-stacked. According to Raman spectroscopy, the conformation of the poly(3-hexylthiophene) backbone is more ordered in the non-covalent hybrids than in the covalent ones.


Reactions ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 457-472
Author(s):  
Jasmine Kaur ◽  
Sundaramurthy Vedachalam ◽  
Philip Boahene ◽  
Ajay K. Dalai

Pyrolysis oil derived from waste tires consists of sulfur content in the range of 7000 to 9000 ppm. For use in diesel engines, its sulfur content must be lowered to 10 to 15 ppm. Though conventional hydrodesulfurization is suitable for the removal of sulfur from tire pyrolysis oil, its high cost provides an avenue for alternative desulfurization technologies to be explored. In this study, oxidative desulfurization (ODS), a low-cost technology, was explored for the desulfurization of tire pyrolysis oil. Two categories of titanium-incorporated mesoporous supports with 20 wt% loaded heteropoly molybdic acid catalyst (HPMo/Ti-Al2O3 and HPMo/Ti-TUD-1) were developed and tested for ODS of tire pyrolysis oil at mild process conditions. Catalysts were characterized by X-ray diffraction, BET-N2 physisorption, and X-ray photoelectron spectroscopy (XPS). The incorporation of Ti into Al2O3 and TUD-1 frameworks was confirmed by XPS. The surface acidity of catalysts was studied by the temperature-programmed desorption of NH3 and pyridine FTIR analyses. HPMo/Ti-Al2O3 and HPMo/Ti-TUD-1 catalysts contained both Lewis and Brønsted acid sites. The presence of titanium in catalysts was found to promote the ODS activity of phosphomolybdic acid. The Ti-TUD-1-supported catalysts performed better than the Ti-Al2O3-supported catalysts for the ODS of tire pyrolysis oil. Hydrogen peroxide and cumene peroxide were found to be better oxidants than tert-butyl hydroperoxide for oxidizing sulfur compounds of tire pyrolysis oil. Process parameter optimization by the design of experiments was conducted with an optimal catalyst along with the catalyst regeneration study. An ANOVA statistical analysis demonstrated that the oxidant/sulfur and catalyst/oil ratios were more significant than the reaction temperature for the ODS of tire pyrolysis oil. It followed the pseudo-first-order kinetics over HPMo/Ti-TUD-1.


Sign in / Sign up

Export Citation Format

Share Document