scholarly journals A Method for the Determination of Composition Profiles in Industrial Air Separation, Pressure Swing Adsorption Systems

2003 ◽  
Vol 21 (1) ◽  
pp. 35-52 ◽  
Author(s):  
C.C.K. Beh ◽  
P.A. Webley

A simplified energy-balance equation has been proposed as an aid to online measurement of the adsorbed-phase nitrogen loading in industrial-scale pressure and vacuum swing adsorption systems consisting of one preferentially adsorbed component. Implementation of this technique to current and future plants requires the addition of thermocouples (which are relatively inexpensive) located axially through the bed and pressure transmitters at the bottom and top of the bed. This methodology has the advantage that the composition front may be inferred accurately from direct measurements of the local pressure and temperature, and used as the basis for process monitoring and diagnostics of plant purity, recovery and production rate.

2018 ◽  
Author(s):  
Michael Fischer

<div>Aluminophosphates with zeolite-like topologies (AlPOs) have received considerable attention as potential adsorbents for use in the separation of methane-containing gas mixtures. Such separations, especially the removal of carbon dioxide and nitrogen from methane, are of great technological relevance in the context of the “upgrade” of natural gas, landfill gas, and biogas. While more than 50 zeolite frameworks have been synthesised in aluminophosphate composition or as heteroatom substituted AlPO derivatives, only a few of them have been characterised experimentally with regard to their adsorption and separation behaviour. In order to predict the potential of a variety of AlPO frameworks for applications in CO<sub>2</sub>/CH<sub>4</sub> and CH<sub>4</sub>/N<sub>2</sub> separations, atomistic grand-canonical Monte Carlo (GCMC) simulations were performed for 53 different structures. Building on previous work, which studied CO<sub>2</sub>/N<sub>2</sub> mixture adsorption in AlPOs (M. Fischer, <i>Phys. Chem. Chem. Phys.</i>, 2017, <b>19</b>, 22801–22812), force field parameters for methane adsorption in AlPOs were validated through a comparison to available experimental adsorption data. Afterwards, CO<sub>2</sub>/CH<sub>4</sub> and CH<sub>4</sub>/N<sub>2</sub> mixture isotherms were computed for all 53 frameworks for room temperature and total pressures up to 1000 kPa (10 bar), allowing the prediction of selectivities and working capacities for conditions that are relevant for pressure swing adsorption (PSA) and vacuum swing adsorption (VSA). For CO<sub>2</sub>/CH<sub>4 </sub>mixtures, the <b>GIS</b>, <b>SIV</b>, and <b>ATT</b> frameworks were found to have the highest selectivities and CO<sub>2 </sub>working capacities under VSA conditions, whereas several frameworks, among them <b>AFY</b>, <b>KFI</b>, <b>AEI</b>, and <b>LTA</b>, show higher working capacities under PSA conditions. For CH<sub>4</sub>/N<sub>2</sub> mixtures, all frameworks are moderately selective for methane over nitrogen, with <b>ATV</b> exhibiting a significantly higher selectivity than all other frameworks. While some of the most promising topologies are either not available in pure-AlPO<sub>4</sub> composition or collapse upon calcination, others can be synthesised and activated, rendering them interesting candidates for future experimental studies. In addition to predictions of mixture adsorption isotherms, further simulations were performed for four selected systems in order to investigate the microscopic origins of the macroscopic adsorption behaviour, <i>e.g. </i>with regard to the very high CH<sub>4</sub>/N<sub>2</sub> selectivity of <b>ATV</b> and the loading-dependent evolution of the heat of CO<sub>2</sub> adsorption and CO<sub>2</sub>/CH<sub>4</sub> selectivity of <b>AEI</b> and GME.</div>


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2235 ◽  
Author(s):  
Jimmy Romanos ◽  
Sara Abou Dargham ◽  
Roy Roukos ◽  
Peter Pfeifer

An overview is given of the development of sorbent materials for hydrogen storage. Understanding the surface properties of the adsorbed film is crucial to optimize hydrogen storage capacities. In this work, the lattice gas model (Ono-Kondo) is used to determine the properties of the adsorbed hydrogen film from a single supercritical hydrogen isotherm at 77 K. In addition, this method does not require a conversion between gravimetric excess adsorption and absolute adsorption. The overall average binding energy of hydrogen is 4.4 kJ/mol and the binding energy at low coverage is 9.2 kJ/mol. The hydrogen film density at saturation is 0.10 g/mL corresponding to a local pressure of 1500 bar in the adsorbed phase.


1988 ◽  
Vol 43 (5) ◽  
pp. 1017-1031 ◽  
Author(s):  
S. Farooq ◽  
M.M. Hassan ◽  
D.M. Ruthven

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5123
Author(s):  
Tyler P. Farr ◽  
Nhu Pailes Nguyen ◽  
H. Evan Bush ◽  
Andrea Ambrosini ◽  
Peter G. Loutzenhiser

An A‑ and B‑site substitutional study of SrFeO3−δ perovskites (A’xA1−xB’yB1−yO3−δ, where A = Sr and B = Fe) was performed for a two‑step solar thermochemical air separation cycle. The cycle steps encompass (1) the thermal reduction of A’xSr1−xB’yFe1−yO3−δ driven by concentrated solar irradiation and (2) the oxidation of A’xSr1−xB’yFe1−yO3−δ in air to remove O2, leaving N2. The oxidized A’xSr1−xB’yFe1−yO3−δ is recycled back to the first step to complete the cycle, resulting in the separation of N2 from air and concentrated solar irradiation. A-site substitution fractions between 0 ≤ x ≤ 0.2 were examined for A’ = Ba, Ca, and La. B-site substitution fractions between 0 ≤ y ≤ 0.2 were examined for B’ = Cr, Cu, Co, and Mn. Samples were prepared with a modified Pechini method and characterized with X-ray diffractometry. The mass changes and deviations from stoichiometry were evaluated with thermogravimetry in three screenings with temperature- and O2 pressure-swings between 573 and 1473 K and 20% O2/Ar and 100% Ar at 1 bar, respectively. A’ = Ba or La and B’ = Co resulted in the most improved redox capacities amongst temperature- and O2 pressure-swing experiments.


Sign in / Sign up

Export Citation Format

Share Document