Co2 Abatement and Fuel Mix in German Electric Power Generation — Is the “Ecological Electricity Tax” Ecologically Effective?

2005 ◽  
Vol 16 (2) ◽  
pp. 255-271 ◽  
Author(s):  
Harald Tauchmann

This paper analyzes the effect of a potential carbon tax on inter-fuel substitution in the electric power sector in Germany. By analyzing firm level panel data (1980–1998), we show that the fuel mix as used by power plants is price inelastic. That means that differential fuel taxes, e.g. a carbon tax, will not induce inter-fuel substitution towards less carbon intensive fuels. This in turn means that the recent introduction in Germany of an electricity tax cannot be judged less effective than the hypothetical introduction of a carbon tax with respect to power related CO2 emissions. It is likely, however, that in the course of the deregulation of the German power sector a carbon tax will become significantly more effective than an electricity tax.

2004 ◽  
Vol 126 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Anugerah Widiyanto ◽  
Seizo Kato ◽  
Naoki Maruyama

A deterministic quantitative model has been developed to compare the technical, economical and environmental feature of various electric power generating plants. The model, which is based on matrix operations, is used in evaluating the various aspects of energy sources available for electricity generation systems in a developing country. Several energy sources which could be considered for production of electricity to meet current and future electricity demands have been chosen. These will include fossil fuel fired, nuclear, and natural-renewable energy power plants. And, a set of criteria for optimized selection includes five area of concerns: energy economy, energy security, environmental protection, socio-economic development and technological aspects for the electric power generations. The model developed in this study is applied to the Indonesian’s electric power sector development. Most of the data required are obtained from various sources related to power industry in Indonesia, such as the electricity generating authority of Indonesia (Perusahaan Listrik Negara, PLN), Government of Indonesia, World Bank, Asian Development Bank, United Nations, and other sources, both in published and public domains. The result of this study will be a ranking of energy sources for Indonesia power generation systems based on the Euclidean composite distance of each alternative to the designated optimal source of energy.


2001 ◽  
Vol 40 (2) ◽  
pp. 115-133
Author(s):  
Abdul Ghafoor ◽  
Jhon Weiss

The study investigates the performance of electric power sector of Pakistan at the firm level, as well as the sector as a whole. It identifies and attempts to quantify the extent of inefficiencies. Since either physical or financial or productivity indicators alone are not able to explain the duality of public infrastructure purposes and the complexity of their multi-dimensional goals, a set of relevant physical, financial, and productivity indicators have been used in evaluating the performance of this sector. Further, a Cobb- Douglas production function has also been used to calculate the trend in the growth of total factor productivity. Economies of scale have also been studied in the case of electric power generation.


2021 ◽  
Vol 1 (1) ◽  
pp. 06-018
Author(s):  
Ebigenibo Genuine Saturday

In this paper, the structure of the Nigerian power sector is examined, the problems in the structure are identified and a new structure is proposed for effective power generation, transmission and distribution. Besides the problems usually canvassed, the current structure is defective from the perspective of the ownership of the power infrastructures, passive involvement of state governments and undue influence of the federal government. The reforms in the sector were driven by the Electric Power Sector Reform Act (EPSRA) of 2005, leading to the creation of Power Holding Company of Nigeria (PHCN) to take both the assets and the liabilities of the then National Electric Power Authority (NEPA), and the subsequent unbundling of PHCN to 18 successor companies – 6 power generating companies, one power transmission company and 11 power distribution companies. The new structure proposed in this work gives room for every state government to own power plants and distribute power in the various states. They can equally buy power from independent power producers. Power plants owned by the federal government in the present structure are to continue sending power to the national grid and made available to states with insufficient power generation in the new structure. Independent power producers can also send power to the national grid. The federal government will continue managing power transmission in the new structure. Each state government will own at least two power distribution companies in partnership with private organizations who will equally have a stake in the ownership of the power generating plants. The tariff of grid-connected power will be higher, encouraging states to go into active power generation. The new structure will enable the federal government to do away with rural electrification programme and other power generation options regulated by the Nigerian Electricity Regulatory Commission which should be under the control of various state governments. New laws are needed in the place of the EPSRA to achieve the new structure. The federal government will make money from the proposed structure instead of spending huge sums of money in the present structure.


Author(s):  
William D. Rezak

One of America’s best kept secrets is the success of its nuclear electric power industry. This paper presents data which support the construction and operating successes enjoyed by energy companies that operate nuclear power plants in the US. The result—the US nuclear industry is alive and well. Perhaps it’s time to start anew the building of nuclear power plants. Let’s take the wraps off the major successes achieved in the nuclear power industry. Over 20% of the electricity generated in the United States comes from nuclear power plants. An adequate, reliable supply of reasonably priced electric energy is not a consequence of an expanding economy and gross national product; it is an absolute necessity before such expansion can occur. It is hard to imagine any aspect of our business or personal lives not, in some way, dependent upon electricity. All over the world (in 34 countries) nuclear power is a low-cost, secure, safe, dependable, and environmentally friendly form of electric power generation. Nuclear plants in these countries are built in six to eight years using technology developed in the US, with good performance and safety records. This treatise addresses the success experienced by the US nuclear industry over the last 40 years, and makes the case that this reliable, cost-competitive source of electric power can help support the economic engine of the country and help prevent experiences like the recent crisis in California. Traditionally, the evaluation of electric power generation facility performance has focused on the ability of plants to produce at design capacity for high percentages of the time. Successful operation of nuclear facilities is determined by examining capacity or load factors. Load factor is the percentage of design generating capacity that a power plant actually produces over the course of a year’s operation. This paper makes the case that these operating performance indicators warrant renewed consideration of the nuclear option. Usage of electricity in the US now approaches total generating capacity. The Nuclear Regulatory Commission has pre-approved construction and operating licenses for several nuclear plant designs. State public service commissions are beginning to understand that dramatic reform is required. The economy is recovering and inflation is minimal. It’s time, once more, to turn to the safe, reliable, environmentally friendly nuclear power alternative.


Sign in / Sign up

Export Citation Format

Share Document