scholarly journals Observed Variability of Near-Surface Salinity Field on Seasonal and Interannual Time Scales and Its Impact on the Evolution of Sea Surface Temperature of the Tropical Indian Ocean

2015 ◽  
Vol 6 (2) ◽  
pp. 87-111 ◽  
Author(s):  
R. R. Rao
2015 ◽  
Vol 28 (8) ◽  
pp. 3122-3132 ◽  
Author(s):  
Ming Luo ◽  
Yee Leung ◽  
Yu Zhou ◽  
Wei Zhang

Abstract Temporal scaling properties of the monthly sea surface temperature anomaly (SSTA) in global ocean basins are examined by the power spectrum and detrended fluctuation analysis methods. Analysis results show that scaling behaviors of the SSTA in most ocean basins (e.g., global average, South Pacific, eastern and western tropical Pacific, tropical Indian Ocean, and tropical Atlantic) are separated into two distinct regimes by a common crossover time scale of 52 months (i.e., 4.3 yr). It is suggested that this crossover is modulated by the El Niño/La Niña–Southern Oscillation (ENSO), indicating different scaling properties at different time scales. The SSTA time series is nonstationary and antipersistent at the small scale (i.e., crossover). It is, however, stationary and long range correlated at the large scale (i.e., crossover). For both time scales, scaling behaviors of SSTA are heterogeneously distributed over the ocean, and the fluctuation of SSTA intensifies with decreasing latitude. Stronger fluctuation appears over the tropical regions (e.g., central-eastern tropical Pacific, tropical Atlantic, tropical Indian Ocean, and South China Sea), which are directly or indirectly linked to ENSO. Weaker fluctuation and stronger persistence are found in mid- and high-latitude areas, coinciding with the “reemergence” areas.


2020 ◽  
Author(s):  
Dong-Jin Kang ◽  
Sang-Hwa Choi ◽  
Daeyeon Kim ◽  
Gyeong-Mok Lee

<p>Surface seawater carbon dioxide was observed from 3 °S to 27 °S along 67 °E of the Indian Ocean in April 2018 and 2019. Partial pressure of CO<sub>2</sub>(pCO<sub>2</sub>) in the surface seawater and the atmosphere were observed every two minutes using an underway CO2 measurement system (General Oceanics Model 8050) installed on R/V Isabu. Surface water temperature and salinity were measured as well. The pCO<sub>2</sub> was measured using Li-7000 NDIR. Standard gases were measured every 8 hours in five classes with concentrations of 0 µatm, 202 µatm, 350 µatm, 447 µatm, and 359.87 µatm. The fCO<sub>2</sub> of atmosphere remained nearly constant at 387 ± 2 µatm, but the surface seawater fCO<sub>2</sub> peaked at about 3 °S and tended to decrease toward the north and south. The distribution of fCO<sub>2</sub> in surface seawater according to latitude tends to be very similar to that of sea surface temperature. In order to investigate the factors that control the distribution of fCO<sub>2</sub> in surface seawater, we analyzed the sea surface temperature, sea surface salinity, and other factors. The effects of salinity are insignificant, and the surface fCO<sub>2</sub> distribution is mainly controlled by sea surface temperature and other factors that can be represented mainly by biological activity and mixing.</p>


2013 ◽  
Vol 10 (4) ◽  
pp. 841-844 ◽  
Author(s):  
M. M. Ali ◽  
D. Swain ◽  
T. Kashyap ◽  
J. P. McCreary ◽  
P. V. Nagamani

2021 ◽  
Vol 925 (1) ◽  
pp. 012021
Author(s):  
D W Purnaningtyas ◽  
F Khadami ◽  
Avrionesti

Abstract Tropical cyclone (TC) passage triggers a complex response from the adjacent ocean, including vertical mixing, leading to biochemical alterations and affecting the surrounding ecosystem’s dynamics. In previous studies, increased nutrient concentrations and primary production were observed along the cyclone track after the storm. TC Seroja was awakened near the equator in the southeastern tropical Indian Ocean, making it interesting to investigate how the ambient ecosystem responds. Hence, we analyzed the sea surface temperature and nutrient changes during the Seroja event using multi-satellite remote sensing and numerical model data in the south of Indonesia and East Timor along the Seroja track between April 2 and 10, 2021. Immediately after the TC Seroja passed, the sea surface temperature cooled to 3 °C around the TC lane. At the same time, the spatial distribution patterns showed the upsurge of some nutrients in response to the passage of TC Seroja; the surface nitrate swells up to 1.5 mmol/m3, while phosphate increased up to 0.2 mmol/m3, and the dissolved silicate concentration enhanced up to 1.0 mmol/m3. The responses recover within 2-7 days. These results indicate that tropical cyclones contribute to nutrient enrichment in oligotrophic areas outside of their usual annual upwelling time, thereby further supporting ecosystem sustainability.


Sign in / Sign up

Export Citation Format

Share Document