scholarly journals Upregulation of CC Chemokine Receptor 7 (CCR7) Enables Migration of Xenogeneic Human Adipose-Derived Mesenchymal Stem Cells to Rat Secondary Lymphoid Organs

2016 ◽  
Vol 22 ◽  
pp. 5206-5217 ◽  
Author(s):  
Tian Ma ◽  
Shao-Liang Luan ◽  
Hong Huang ◽  
Xing-Kun Sun ◽  
Yan-Mei Yang ◽  
...  
Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2409-2409
Author(s):  
Karin Tarte ◽  
Patricia Ame-Thomas ◽  
Hélène Maby-El Hajjami ◽  
Céline Monvoisin ◽  
Rachel Jean ◽  
...  

Abstract There is accumulating evidence that cellular microenvironment plays a key role in follicular lymphoma (FL) pathogenesis, both within tumor lymph nodes (LN) and in infiltrated bone marrow (BM) where ectopic LN-like reticular cells are integrated within malignant B-cell nodular aggregates. In normal secondary lymphoid organs, specific stromal cell subsets provide a highly specialized microenvironment that supports immune response. In particular, fibroblastic reticular cells (FRC) mediate immune cell migration, adhesion, and reciprocal interactions. The role of FRC and their postulated progenitors, i.e. bone marrow mesenchymal stem cells (MSC), in FL remains unexplored. In this study, we have investigated the relationships between FRC and MSC and their capacity to sustain malignant B-cell growth. Our findings strongly suggest that secondary lymphoid organs contain bona-fide MSC able to give rise at single-cell level to adipocytes, chondrocytes, and osteoblasts. These LN-derived MSC could also differentiate, in response to a combination of tumor necrosis factor-α (TNF) and lymphotoxin-α1β2 (LT), into fully functional FRC, able to construct a dense extracellular reticular meshwork positive for transglutaminase and fibronectin staining, to produce inflammatory (CXCL9, CXCL10, CCL5, CCL2) and LN-specific (CCL19) chemokines, and to favour lymphoma B-cell growth. Bone marrow-derived MSC (BM-MSC) acquire in vitro a complete FRC phenotype in the same culture conditions. As an exemple, BM-MSC had a strong, although not complete, protective effect on serum deprivation-induced apoptosis of BL2 cell line (mean percentage of CD20posCaspase-3pos cells: 24.8 +/− 17.5% in coculture with BM-MSC versus 80.7 +/- 10.4% in medium alone; P < .05; n =5) and pretreatment with TNF/LT fully restored BL2 viability (mean percentage of CD20posCaspase-3pos cells: 7.4 +/− 4.7%; P < .05; n = 5). Moreover, stimulation of stromal cells by TNF/LT before coculture enhanced the number of viable CD19pos primary FL B cells by 2.4-fold for BM-MSC and 2.3 fold for LN-MSC compared with the culture without stromal cells (P < .05; n = 6). Interestingly, cell contact with lymphoma B-cell lines or purified FL B cells trigger the differentiation of BM-MSC into FRC that, in turn, support malignant B-cell migration, adhesion and survival. Altogether, these new insights into the interactions between lymphoma cells and their microenvironment could offer original therapeutic strategies.


Blood ◽  
2006 ◽  
Vol 109 (2) ◽  
pp. 693-702 ◽  
Author(s):  
Patricia Amé-Thomas ◽  
Hélène Maby-El Hajjami ◽  
Céline Monvoisin ◽  
Rachel Jean ◽  
Delphine Monnier ◽  
...  

Abstract Accumulating evidence indicates that the cellular microenvironment plays a key role in follicular lymphoma (FL) pathogenesis, both within tumor lymph nodes (LNs) and in infiltrated bone marrow where ectopic LN-like reticular cells are integrated within malignant B-cell nodular aggregates. In normal secondary lymphoid organs, specific stromal cell subsets provide a highly specialized microenvironment that supports immune response. In particular, fibroblastic reticular cells (FRCs) mediate immune cell migration, adhesion, and reciprocal interactions. The role of FRCs and their postulated progenitors, that is, bone marrow mesenchymal stem cells (MSCs), in FL remains unexplored. In this study, we investigated the relationships between FRCs and MSCs and their capacity to sustain malignant B-cell growth. Our findings strongly suggest that secondary lymphoid organs contain MSCs able to give rise to adipocytes, chondrocytes, osteoblasts, as well as fully functional B-cell supportive FRCs. In vitro, bone marrow–derived MSCs acquire a complete FRC phenotype in response to a combination of tumor necrosis factor-α and lymphotoxin-α1β2. Moreover, MSCs recruit primary FL cells that, in turn, trigger their differentiation into FRCs, making them able to support malignant B-cell survival. Altogether, these new insights into the cross talk between lymphoma cells and their microenvironment could offer original therapeutic strategies.


Blood ◽  
2005 ◽  
Vol 106 (2) ◽  
pp. 419-427 ◽  
Author(s):  
Valeria Sordi ◽  
Maria Luisa Malosio ◽  
Federica Marchesi ◽  
Alessia Mercalli ◽  
Raffaella Melzi ◽  
...  

Abstract Bone marrow–derived mesenchymal stem cells (BM-MSCs) are stromal cells with the ability to proliferate and differentiate into many tissues. Although they represent powerful tools for several therapeutic settings, mechanisms regulating their migration to peripheral tissues are still unknown. Here, we report chemokine receptor expression on human BM-MSCs and their role in mediating migration to tissues. A minority of BM-MSCs (2% to 25%) expressed a restricted set of chemokine receptors (CXC receptor 4 [CXCR4], CX3C receptor 1 [CX3CR1], CXCR6, CC chemokine receptor 1 [CCR1], CCR7) and, accordingly, showed appreciable chemotactic migration in response to the chemokines CXC ligand 12 (CXCL12), CX3CL1, CXCL16, CC chemokine ligand 3 (CCL3), and CCL19. Using human pancreatic islets as an in vitro model of peripheral tissue, we showed that islet supernatants released factors able to attract BM-MSCs in vitro, and this attraction was principally mediated by CX3CL1 and CXCL12. Moreover, cells with features of BM-MSCs were detected within the pancreatic islets of mice injected with green fluorescent protein (GFP)–positive BM. A population of bona fide MSCs that also expressed CXCR4, CXCR6, CCR1, and CCR7 could be isolated from normal adult human pancreas. This study defines the chemokine receptor repertoire of human BM-MSCs that determines their migratory activity. Modulation of homing capacity may be instrumental for harnessing the therapeutic potential of BM-MSCs.


Cytokine ◽  
2021 ◽  
Vol 148 ◽  
pp. 155706
Author(s):  
Gholamhossein Hassanshahi ◽  
Mohammad Amin Roohi ◽  
Seyed-Alireza Esmaeili ◽  
Hossein Pourghadamyari ◽  
Reza Nosratabadi

2004 ◽  
Vol 279 (22) ◽  
pp. 23214-23222 ◽  
Author(s):  
Trudy A. Kohout ◽  
Shelby L. Nicholas ◽  
Stephen J. Perry ◽  
Greg Reinhart ◽  
Sachiko Junger ◽  
...  

2019 ◽  
Vol 19 (7) ◽  
pp. 1941-1954 ◽  
Author(s):  
Kenneth A. Fowler ◽  
Viktoria Vasilieva ◽  
Ekaterina Ivanova ◽  
Olga Rimkevich ◽  
Andrey Sokolov ◽  
...  

2009 ◽  
Vol 16 (1) ◽  
pp. 98-105 ◽  
Author(s):  
Eduardo J Villablanca ◽  
Laura Raccosta ◽  
Dan Zhou ◽  
Raffaella Fontana ◽  
Daniela Maggioni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document