scholarly journals Use of a Brain Navigator to Identify the Precentral Knob of the Precentral Gyrus in Normal Subjects

2022 ◽  
Vol 28 ◽  
Author(s):  
Sung Ho Jang ◽  
Han Do Lee ◽  
Eun Bi Choi
Neurosurgery ◽  
2003 ◽  
Vol 53 (6) ◽  
pp. 1342-1353 ◽  
Author(s):  
Franck-Emmanuel Roux ◽  
Jean-Albert Lotterie ◽  
Emmanuelle Cassol ◽  
Yves Lazorthes ◽  
Jean-Christophe Sol ◽  
...  

Abstract OBJECTIVE To demonstrate that amputees performing “virtual” movements of their amputated limb activate cortical areas previously devoted to their missing limb, we studied amputees with functional magnetic resonance imaging (fMRI) and positron emission tomographic (PET) scans and compared the results with those of normal volunteers performing imaginary movements during fMRI acquisitions. METHODS Ten amputees (age range, 33–92 yr; average age, 49 yr; six men and four women; eight upper-limb and two lower-limb amputations) able to move their phantom limb at will were studied by fMRI (all patients) and PET scan (seven patients). The time between amputation and fMRI and PET studies ranged from 1 to 27 years (average, 13 yr). Patients were asked to perform virtual movements of the amputated limb and normal movements of the contralateral normal limb according to the functional images acquisition procedure. Movements of the stump were also used to differentiate stump cortical areas from virtual movement-activated areas. Ten right-handed volunteers, age- and sex-matched to the amputees, were also studied by fMRI. All volunteers were asked to perform four tasks during their fMRI study: imaginary movements of their right arm (1 task) and foot (1 task) and real movements of their left arm (1 task) and foot (1 task). RESULTS In amputees, virtual movements of the missing limbs produced contralateral primary sensorimotor cortex activation on both fMRI and PET scans. These activation areas, different from the stump activation areas, were similar in location to contralateral normal limb-activated areas. Quantitatively, in two amputees who claimed to be able to perform both slow and fast virtual movements, regional cerebral blood flow measured by PET scan in the precentral gyrus increased significantly during fast movements in comparison with slow virtual movements. In normal subjects, significant differences between real versus imaginary fMRI activations were found (for both foot and hand movements); imaginary right hand and foot tasks activated primarily the contralateral supplementary motor areas, with no significant activation detected in the contralateral precentral or postcentral gyri. CONCLUSION Primary sensorimotor cortical areas can be activated by phantom-limb movements and thus can be considered functional for several years or decades after amputation. In this study, we found that the location of the activation of these areas is comparable to that of activations produced by normal movements in control subjects or in amputees.


1985 ◽  
Vol 16 (4) ◽  
pp. 260-266 ◽  
Author(s):  
Lee Ann Laraway

The purpose of this study was to determine whether there is a statistically significant difference between the auditory selective attention abilities of normal and cerebral-palsied individuals. Twenty-three cerebral-palsied and 23 normal subjects between the ages of 5 and 21 were asked to repeat a series of 30 items consisting of from 2 to 4 digits in the presence of intermittent white noise. Results of the study indicate that cerebral-palsied individuals perform significantly poorer than normal individuals when the stimulus is accompanied by noise. Noise was not a significant factor in the performance of the normal subjects regardless of age.


1965 ◽  
Vol 8 (3) ◽  
pp. 223-234 ◽  
Author(s):  
William Melnick

Five subjects with normal middle ear mechanisms, and otosclerotic patients, before and after stapedectomy, matched the loudness of their voices to the loudness of a 125-cps-sawtooth noise. The results showed loudness matching functions with gradual slopes, less than 1.00, for the normal subjects and the patients prior to stapedectomy. Post-surgically, the loudness function for the patients increased in steepness to considerably more than 1.00. These results are explained, most logically, in terms of increased sensitivity of the altered middle ear to sound energy generated by the listener’s own voice.


1964 ◽  
Vol 7 (4) ◽  
pp. 369-371
Author(s):  
Samuel Fillenbaum

Binaurally asynchronous delayed auditory feedback (DAF) was compared with synchronous DAF in 80 normal subjects. Asynchronous DAF (0.10 sec difference) did not yield results different from those obtained under synchronous DAF with a 0.20 sec delay interval, an interval characteristically resulting in maximum disruptions in speech.


1988 ◽  
Vol 53 (4) ◽  
pp. 459-466 ◽  
Author(s):  
Brenda Y. Terrell ◽  
Richard G. Schwartz

The play behavior of 10 language-impaired children was observed. Their performances in play were compared to those of 10 normal-language children matched for chronological age as well as to those of 10 normal-language children matched for mean length of utterance. The children were observed as they played spontaneously with a standard group of toys and as they played with objects that required object transformations for successful play. The chronological age-matched normal subjects showed a trend toward performance of more object transformations in play than either the language-impaired or younger normal-language children. Additionally, although object transformations were observed in both segments, all children performed more object transformations with objects than with toys.


2001 ◽  
Vol 120 (5) ◽  
pp. A112-A112 ◽  
Author(s):  
J CURRY ◽  
G SHI ◽  
J PANDOLFINO ◽  
R JOEHL ◽  
J BRASSEUR ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document