Construction and Transformation of Recombinant Vector Consisting of GUS Gene and Zeta Class Glutathione S-Transferase 1 Promoter in Arabidopsis thaliana

2019 ◽  
Vol 08 (02) ◽  
pp. 158-164
Author(s):  
嘉彦 蒋
1998 ◽  
Vol 17 (9) ◽  
pp. 700-704 ◽  
Author(s):  
K.-Y. Yang ◽  
E.-Y. Kim ◽  
C.-S. Kim ◽  
J.-O. Guh ◽  
K.-C. Kim ◽  
...  

2008 ◽  
Vol 25 (2) ◽  
pp. 191-196 ◽  
Author(s):  
Bunyapa Wangwattana ◽  
Yoko Koyama ◽  
Yasutaka Nishiyama ◽  
Masahiko Kitayama ◽  
Mami Yamazaki ◽  
...  

Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 573 ◽  
Author(s):  
Xia Wan ◽  
Lu Peng ◽  
Jie Xiong ◽  
Xiaoyi Li ◽  
Jianmei Wang ◽  
...  

Because they are sessile organisms, plants need rapid and finely tuned signaling pathways to adapt to adverse environments, including salt stress. In this study, we identified a gene named Arabidopsis thaliana stress-induced BTB protein 1 (AtSIBP1), which encodes a nucleus protein with a BTB domain in its C-terminal side and is induced by salt and other stresses. The expression of the β-glucuronidase (GUS) gene driven by the AtSIBP1 promoter was found to be significantly induced in the presence of NaCl. The sibp1 mutant that lost AtSIBP1 function was found to be highly sensitive to salt stress and more vulnerable to salt stress than the wild type WT, while the overexpression of AtSIBP1 transgenic plants exhibited more tolerance to salt stress. According to the DAB staining, the sibp1 mutant accumulated more reactive oxygen species (ROS) than the WT and AtSIBP1 overexpression plants after salt stress. In addition, the expression levels of stress-induced marker genes in AtSIBP1 overexpression plants were markedly higher than those in the WT and sibp1 mutant plants. Therefore, our results demonstrate that AtSIBP1 was a positive regulator in salinity responses in Arabidopsis.


1999 ◽  
Vol 89 (8) ◽  
pp. 673-678 ◽  
Author(s):  
Gan-Der Ho ◽  
Chang-Hsien Yang

Strains of Ralstonia solanacearum have been shown to cause bacterial wilt in some, but not all, ecotypes of Arabidopsis thaliana. We demonstrate here that after inoculation of the leaves of resistant ecotype S96 with R. solanacearum strain Ps95 necrosis around the inoculation site rapidly appeared and no further symptoms developed in the plant. Leaves of susceptible ecotype N913 completely wilted 7 days after inoculation with Ps95, and symptoms spread systemically throughout the whole plant within 2 weeks after inoculation. These results suggest that the resistance of Arabidopsis S96 to R. solanacearum is due to a response similar to the hypersensitive response (HR) observed in other plant diseases. Northern blot analysis of the expression of defense-related genes, known to be differentially induced during the HR in Arabidopsis, indicated that pathogenesis-related protein PR-1, glutathione S-transferase (GST1), and Cu, Zn superoxide dismutase (SOD) mRNAs increased significantly in S96 leaves between 3 to 12 h after infiltration with Ps95. The induction of these genes in susceptible ecotype N913 by Ps95 was clearly delayed. Genetic analysis of crosses between resistant ecotype S96 and susceptible ecotype N913 indicated that resistance to Ps95 is due to a single dominant locus.


Sign in / Sign up

Export Citation Format

Share Document