Local Stability Analysis with Simplified Monod-Haldane R-M Predator-Prey Model

2021 ◽  
Vol 11 (07) ◽  
pp. 1379-1388
Author(s):  
晨霞 宋
2018 ◽  
Vol 28 (09) ◽  
pp. 1850116 ◽  
Author(s):  
A. M. Yousef ◽  
S. M. Salman ◽  
A. A. Elsadany

A discrete predator–prey model with delayed density dependence in the rate of growth of the prey is considered. In particular, we analyze the model presented by Kot [2005] which consists of three coupled difference equations and contains two parameters. Existence and local stability analysis of fixed points of the model are addressed. The normal form technique and perturbation method are applied to the different types of bifurcations that exist in the model being investigated. It is proved that the existence of transcritical and Neimark–Sacker bifurcations can occur in the model. In addition, the chaotic behavior of the model in the sense of Marotto is proved. To verify the results obtained analytically, we perform numerical simulations which also explore further the richer dynamics of the model.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
S. Vinoth ◽  
R. Sivasamy ◽  
K. Sathiyanathan ◽  
Bundit Unyong ◽  
Grienggrai Rajchakit ◽  
...  

AbstractIn this article, we discuss the dynamics of a Leslie–Gower ratio-dependent predator–prey model incorporating fear in the prey population. Moreover, the Allee effect in the predator growth is added into account from both biological and mathematical points of view. We explore the influence of the Allee and fear effect on the existence of all positive equilibria. Furthermore, the local stability properties and possible bifurcation behaviors of the proposed system about positive equilibria are discussed with the help of trace and determinant values of the Jacobian matrix. With the help of Sotomayor’s theorem, the conditions for existence of saddle-node bifurcation are derived. Also, we show that the proposed system admits limit cycle dynamics, and its stability is discussed with the value of first Lyapunov coefficient. Moreover, the numerical simulations including phase portrait, one- and two-parameter bifurcation diagrams are performed to validate our important findings.


2017 ◽  
Vol 10 (08) ◽  
pp. 1750119 ◽  
Author(s):  
Wensheng Yang

The dynamical behaviors of a diffusive predator–prey model with Beddington–DeAngelis functional response and disease in the prey is considered in this work. By applying the comparison principle, linearized method, Lyapunov function and iterative method, we are able to achieve sufficient conditions of the permanence, the local stability and global stability of the boundary equilibria and the positive equilibrium, respectively. Our result complements and supplements some known ones.


Sign in / Sign up

Export Citation Format

Share Document