Coordinated Optimization of Integrated Electricity-Heat Energy System Based on Soft Actor-Critic

Smart Grid ◽  
2021 ◽  
Vol 11 (02) ◽  
pp. 107-117
Author(s):  
雨 刘
2014 ◽  
Vol 3 (3) ◽  
pp. 1-16 ◽  
Author(s):  
Jean-Marie Bahu ◽  
Andreas Koch ◽  
Enrique Kremers ◽  
Syed Monjur Murshed

Today's needs to reduce the environmental impact of energy use impose dramatic changes for energy infrastructure and existing demand patterns (e.g. buildings) corresponding to their specific context. In addition, future energy systems are expected to integrate a considerable share of fluctuating power sources and equally a high share of distributed generation of electricity. Energy system models capable of describing such future systems and allowing the simulation of the impact of these developments thus require a spatial representation in order to reflect the local context and the boundary conditions. This paper describes two recent research approaches developed at EIFER in the fields of (a) geo-localised simulation of heat energy demand in cities based on 3D morphological data and (b) spatially explicit Agent-Based Models (ABM) for the simulation of smart grids. 3D city models were used to assess solar potential and heat energy demand of residential buildings which enable cities to target the building refurbishment potentials. Distributed energy systems require innovative modelling techniques where individual components are represented and can interact. With this approach, several smart grid demonstrators were simulated, where heterogeneous models are spatially represented. Coupling 3D geodata with energy system ABMs holds different advantages for both approaches. On one hand, energy system models can be enhanced with high resolution data from 3D city models and their semantic relations. Furthermore, they allow for spatial analysis and visualisation of the results, with emphasis on spatially and structurally correlations among the different layers (e.g. infrastructure, buildings, administrative zones) to provide an integrated approach. On the other hand, 3D models can benefit from more detailed system description of energy infrastructure, representing dynamic phenomena and high resolution models for energy use at component level. The proposed modelling strategies conceptually and practically integrate urban spatial and energy planning approaches. The combined modelling approach that will be developed based on the described sectorial models holds the potential to represent hybrid energy systems coupling distributed generation of electricity with thermal conversion systems.


2014 ◽  
Vol 596 ◽  
pp. 678-681
Author(s):  
Ya Ning Yuan ◽  
Ming Meng

In order to achieve the objectives of energy-saving and emission reduction for modern buildings and provide high quality power supply, a DC microgrid system of thermoelectric energy comprehensive control is proposed. The system includes two subsystems of electric energy and heat energy system, and realizes electric and heat energy transformation and combination through cogeneration unit and electronic heating device. To achieve efficient use of energy, integrated management strategies is also proposed. Distributed generations are controlled by the maximum power tracking strategy, and the hybrid energy storage system uses droop control strategy to stabilize DC bus voltage. In the connection point between the grid and microgrid, the bidirectional converter uses vector decoupling control strategy with double closed loop for pulse width modulation (PWM) to solve the problem of bidirectional power flow with the grid. The simulation results indicate that the system can provide high quality, energy saving, stable power for the modern building.


2021 ◽  
Vol 41 (5) ◽  
pp. 59-60
Author(s):  
Deukwon Kim ◽  
Jaehyuk Heo ◽  
Minwhi Kim ◽  
Dongwon Lee

2021 ◽  
Vol 245 ◽  
pp. 01044
Author(s):  
Nan Xu ◽  
Bo Zhou ◽  
Jing Nie ◽  
Yan Song ◽  
Zihao Zhao

With the transformation of the energy market from the traditional vertical integrated structure to the interactive competitive structure, the distributed characteristics of the energy system become more and more obvious, and the traditional centralized optimization method is difficult to reveal the interaction between the multi-agent. In this paper, a method based on master-slave game is proposed to optimize the operation of park integrated energy system. Firstly, user load model, user benefit model, operator revenue and cost model are established for park integrated energy system. Secondly, the Stackelberg master-slave game model of interactive optimization operation is established, and the peak cutting compensation price is adjusted. Both of them aim at maximizing their own interests until the game equilibrium is achieved. A distributed cooperative optimization model with one master and many slaves is established and solved by the combination of genetic algorithm and quadratic programming. Finally, an example is given to verify the effectiveness of the proposed method.


Energy ◽  
2021 ◽  
pp. 120919
Author(s):  
Youjun Zhang ◽  
Junhong Hao ◽  
Zhihua Ge ◽  
Fuxiang Zhang ◽  
Xiaoze Du

Sign in / Sign up

Export Citation Format

Share Document