scholarly journals The need to reassess single-cell RNA sequencing datasets: more is not always better

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 767
Author(s):  
Alex M. Ascensión ◽  
Marcos J. Araúzo-Bravo ◽  
Ander Izeta

Background: The advent of single-cell RNA sequencing (scRNAseq) and additional single-cell omics technologies have provided scientists with unprecedented tools to explore biology at cellular resolution. However, reaching an appropriate number of good quality reads per cell and reasonable numbers of cells within each of the populations of interest are key to infer conclusions from otherwise limited analyses. For these reasons, scRNAseq studies are constantly increasing the number of cells analysed and the granularity of the resultant transcriptomics analyses. Methods: We aimed to identify previously described fibroblast subpopulations in healthy adult human skin by using the largest dataset published to date (528,253 sequenced cells) and an unsupervised population-matching algorithm. Results: Our reanalysis of this landmark resource demonstrates that a substantial proportion of cell transcriptomic signatures may be biased by cellular stress and response to hypoxic conditions. Conclusions: We postulate that the ”more is better” approach, currently prevalent in the scientific community, might undermine the extent of the analysis, possibly due to long computational processing times inherent to large datasets.

2019 ◽  
Author(s):  
Christian Feregrino ◽  
Fabio Sacher ◽  
Oren Parnas ◽  
Patrick Tschopp

AbstractBackgroundThrough precise implementation of distinct cell type specification programs, differentially regulated in both space and time, complex patterns emerge during organogenesis. Thanks to its easy experimental accessibility, the developing chicken limb has long served as a paradigm to study vertebrate pattern formation. Through decades’ worth of research, we now have a firm grasp on the molecular mechanisms driving limb formation at the tissue-level. However, to elucidate the dynamic interplay between transcriptional cell type specification programs and pattern formation at its relevant cellular scale, we lack appropriately resolved molecular data at the genome-wide level. Here, making use of droplet-based single-cell RNA-sequencing, we catalogue the developmental emergence of distinct tissue types and their transcriptome dynamics in the distal chicken limb, the so-called autopod, at cellular resolution.ResultsUsing single-cell RNA-sequencing technology, we sequenced a total of 17,628 cells coming from three key developmental stages of chicken autopod patterning. Overall, we identified 23 cell populations with distinct transcriptional profiles. Amongst them were small, albeit essential populations like the apical ectodermal ridge, demonstrating the ability to detect even rare cell types. Moreover, we uncovered the existence of molecularly distinct sub-populations within previously defined compartments of the developing limb, some of which have important signaling functions during autopod pattern formation. Finally, we inferred gene co-expression modules that coincide with distinct tissue types across developmental time, and used them to track patterning-relevant cell populations of the forming digits.ConclusionsWe provide a comprehensive functional genomics resource to study the molecular effectors of chicken limb patterning at cellular resolution. Our single-cell transcriptomic atlas captures all major cell populations of the developing autopod, and highlights the transcriptional complexity in many of its components. Finally, integrating our data-set with other single-cell transcriptomics resources will enable researchers to assess molecular similarities in orthologous cell types across the major tetrapod clades, and provide an extensive candidate gene list to functionally test cell-type-specific drivers of limb morphological diversification.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 41-OR
Author(s):  
FARNAZ SHAMSI ◽  
MARY PIPER ◽  
LI-LUN HO ◽  
TIAN LIAN HUANG ◽  
YU-HUA TSENG

Sign in / Sign up

Export Citation Format

Share Document