scholarly journals Tools for analysis and conditional deletion of subsets of sensory neurons

2021 ◽  
Vol 6 ◽  
pp. 250
Author(s):  
Sonia Santana-Varela ◽  
Yury D. Bogdanov ◽  
Samuel J. Gossage ◽  
Andrei L. Okorokov ◽  
Shengnan Li ◽  
...  

Background: Somatosensation depends on primary sensory neurons of the trigeminal and dorsal root ganglia (DRG). Transcriptional profiling of mouse DRG sensory neurons has defined at least 18 distinct neuronal cell types. Using an advillin promoter, we have generated a transgenic mouse line that only expresses diphtheria toxin A (DTA) in sensory neurons in the presence of Cre recombinase. This has allowed us to ablate specific neuronal subsets within the DRG using a range of established and novel Cre lines that encompass all sets of sensory neurons.    Methods: A floxed-tdTomato-stop-DTA bacterial artificial chromosome (BAC) transgenic reporter line (AdvDTA) under the control of the mouse advillin DRG promoter was generated. The line was first validated using a Nav1.8Cre and then crossed to CGRPCreER (Calca), ThCreERT2, Tmem45bCre, Tmem233Cre, Ntng1Cre and TrkBCreER (Ntrk2) lines. Pain behavioural assays included Hargreaves’, hot plate, Randall-Selitto, cold plantar, partial sciatic nerve ligation and formalin tests. Results: Motor activity, as assessed by the rotarod test, was normal for all lines tested. Noxious mechanosensation was significantly reduced when either Nav1.8 positive neurons or Tmem45b positive neurons were ablated whilst acute heat pain was unaffected. In contrast, noxious mechanosensation was normal following ablation of CGRP-positive neurons but acute heat pain thresholds were significantly elevated and a reduction in nocifensive responses was observed in the second phase of the formalin test. Ablation of TrkB-positive neurons led to significant deficits in mechanical hypersensitivity in the partial sciatic nerve ligation neuropathic pain model. Conclusions: Ablation of specific DRG neuronal subsets using the AdvDTA line will be a useful resource for further functional characterization of somatosensory processing, neuro-immune interactions and chronic pain disorders.

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 323
Author(s):  
Martina Nicoletti ◽  
Letizia Chiodo ◽  
Alessandro Loppini

Mechanosensing is a key feature through which organisms can receive inputs from the environment and convert them into specific functional and behavioral outputs. Mechanosensation occurs in many cells and tissues, regulating a plethora of molecular processes based on the distribution of forces and stresses both at the cell membrane and at the intracellular organelles levels, through complex interactions between cells’ microstructures, cytoskeleton, and extracellular matrix. Although several primary and secondary mechanisms have been shown to contribute to mechanosensation, a fundamental pathway in simple organisms and mammals involves the presence of specialized sensory neurons and the presence of different types of mechanosensitive ion channels on the neuronal cell membrane. In this contribution, we present a review of the main ion channels which have been proven to be significantly involved in mechanotransduction in neurons. Further, we discuss recent studies focused on the biological mechanisms and modeling of mechanosensitive ion channels’ gating, and on mechanotransduction modeling at different scales and levels of details.


2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Xue-Qin Wang ◽  
Xiao-Lin Zhong ◽  
Zhi-Bin Li ◽  
Hong-Tao Wang ◽  
Juan Zhang ◽  
...  

Author(s):  
Xia Zhang ◽  
Brayden Weir ◽  
Hongru Wei ◽  
Zhiwei Deng ◽  
Xiaoqi Zhang ◽  
...  

AbstractChickpea is an economically important legume crop with high nutritional value in human diets. Aluminium-toxicity poses a significant challenge for the yield improvement of this increasingly popular crop in acidic soils. The wild progenitors of chickpea may provide a more diverse gene pool for Al-tolerance in chickpea breeding. However, the genetic basis of Al-tolerance in chickpea and its wild relatives remains largely unknown. Here, we assessed the Al-tolerance of six selected wild Cicer accessions by measuring the root elongation in solution culture under control (0 µM Al3+) and Al-treatment (30 µM Al3+) conditions. Al-treatment significantly reduced the root elongation in all target lines compared to the control condition after 2-day’s growth. However, the relative reduction of root elongation in different lines varied greatly: 3 lines still retained significant root growth under Al-treatment, whilst another 2 lines displayed no root growth at all. We performed genome-wide identification of multidrug and toxic compound extrusion (MATE) encoding genes in the Cicer genome. A total of 56 annotated MATE genes were identified, which divided into 4 major phylogeny groups (G1-4). Four homologues to lupin LaMATE (> 50% aa identity; named CaMATE1-4) were clustered with previously characterised MATEs related to Al-tolerance in various other plants. qRT-PCR showed that CaMATE2 transcription in root tips was significantly up-regulated upon Al-treatment in all target lines, whilst CaMATE1 was up-regulated in all lines except Bari2_074 and Deste_064, which coincided with the lines displaying no root growth under Al-treatment. Transcriptional profiling in five Cicer tissues revealed that CaMATE1 is specifically transcribed in the root tissue, further supporting its role in Al-detoxification in roots. This first identification of MATE-encoding genes associated with Al-tolerance in Cicer paves the ways for future functional characterization of MATE genes in Cicer spp., and to facilitate future design of gene-specific markers for Al-tolerant line selection in chickpea breeding programs.


Sign in / Sign up

Export Citation Format

Share Document