scholarly journals A Study on the Effects of 50 Hz Magnetic Fields on UV-induced Radical Reactions in Murine Fibroblasts

2010 ◽  
Vol 51 (5) ◽  
pp. 609-613 ◽  
Author(s):  
Ari MARKKANEN ◽  
Jonne NAARALA ◽  
Jukka JUUTILAINEN
2021 ◽  
pp. oemed-2021-107776
Author(s):  
Muhammad Waseem Khan ◽  
Jukka Juutilainen ◽  
Jonne Naarala ◽  
Päivi Roivainen

ObjectivePhotoinduced radical reactions have a fundamental role in skin cancer induced by ultraviolet radiation, and changes in radical reactions have also been proposed as a mechanism for the putative carcinogenic effects of extremely low frequency (ELF) magnetic fields (MFs). We assessed the association of melanoma and squamous cell carcinoma with residential MF exposure.MethodsAll cohort members had lived in buildings with indoor transformer stations (TSs) during the period from 1971 to 2016. MF exposure was assessed based on apartment location. Out of the 225 492 individuals, 8617 (149 291 person-years of follow-up) living in apartments next to TSs were considered as exposed, while individuals living on higher floors of the same buildings were considered as referents. Associations between MF exposure and skin cancers were examined using Cox proportional hazard models.ResultsThe HR for MF exposure ≥6 month was 1.05 (95% CI 0.72 to 1.53) for melanoma and 0.94 (95% CI 0.55 to 1.61) for squamous cell carcinoma. Analysis of the age at the start of residence showed an elevated HR (2.55, 95% CI 1.15 to 5.69) for melanoma among those who lived in the apartments when they were less than 15 years old. This finding was based on seven exposed cases.ConclusionsThe results of this study suggested an association between childhood ELF MF exposure and adult melanoma. This is in agreement with previous findings suggesting that the carcinogenic effects of ELF MFs may be associated particularly with childhood exposure.


1990 ◽  
Vol 164 (1-2) ◽  
pp. 200-204 ◽  
Author(s):  
Yu.N. Molin ◽  
O.A. Anisimov ◽  
A.V. Koptyug ◽  
V.O. Saik ◽  
O.N. Antzutkin

1994 ◽  
Vol 144 ◽  
pp. 559-564
Author(s):  
P. Ambrož ◽  
J. Sýkora

AbstractWe were successful in observing the solar corona during five solar eclipses (1973-1991). For the eclipse days the coronal magnetic field was calculated by extrapolation from the photosphere. Comparison of the observed and calculated coronal structures is carried out and some peculiarities of this comparison, related to the different phases of the solar cycle, are presented.


1994 ◽  
Vol 144 ◽  
pp. 21-28 ◽  
Author(s):  
G. B. Gelfreikh

AbstractA review of methods of measuring magnetic fields in the solar corona using spectral-polarization observations at microwaves with high spatial resolution is presented. The methods are based on the theory of thermal bremsstrahlung, thermal cyclotron emission, propagation of radio waves in quasi-transverse magnetic field and Faraday rotation of the plane of polarization. The most explicit program of measurements of magnetic fields in the atmosphere of solar active regions has been carried out using radio observations performed on the large reflector radio telescope of the Russian Academy of Sciences — RATAN-600. This proved possible due to good wavelength coverage, multichannel spectrographs observations and high sensitivity to polarization of the instrument. Besides direct measurements of the strength of the magnetic fields in some cases the peculiar parameters of radio sources, such as very steep spectra and high brightness temperatures provide some information on a very complicated local structure of the coronal magnetic field. Of special interest are the results found from combined RATAN-600 and large antennas of aperture synthesis (VLA and WSRT), the latter giving more detailed information on twodimensional structure of radio sources. The bulk of the data obtained allows us to investigate themagnetospheresof the solar active regions as the space in the solar corona where the structures and physical processes are controlled both by the photospheric/underphotospheric currents and surrounding “quiet” corona.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


2000 ◽  
Vol 179 ◽  
pp. 177-183
Author(s):  
D. M. Rust

AbstractSolar filaments are discussed in terms of two contrasting paradigms. The standard paradigm is that filaments are formed by condensation of coronal plasma into magnetic fields that are twisted or dimpled as a consequence of motions of the fields’ sources in the photosphere. According to a new paradigm, filaments form in rising, twisted flux ropes and are a necessary intermediate stage in the transfer to interplanetary space of dynamo-generated magnetic flux. It is argued that the accumulation of magnetic helicity in filaments and their coronal surroundings leads to filament eruptions and coronal mass ejections. These ejections relieve the Sun of the flux generated by the dynamo and make way for the flux of the next cycle.


Sign in / Sign up

Export Citation Format

Share Document