scholarly journals Designing Software Prototype for Digital Surface Model Extraction from Stereo Satellite Imagery Based on Rational Function Model

2017 ◽  
Vol 5 (4) ◽  
pp. 195-204
Author(s):  
Rendy Putra Maretika
Author(s):  
X. Qiao ◽  
S. H. Lv ◽  
L. L. Li ◽  
X. J. Zhou ◽  
H. Y. Wang ◽  
...  

Compared to the wide use of digital elevation model (DEM), digital surface model (DSM) receives less attention because that it is composed by not only terrain surface, but also vegetations and man-made objects which are usually regarded as useless information. Nevertheless, these objects are useful for the identification of obstacles around an aerodrome. The primary objective of the study was to determine the applicability of DSM in obstacle clearance surveying of aerodrome. According to the requirements of obstacle clearance surveying at QT airport, aerial and satellite imagery were used to generate DSM, by means of photogrammetry, which was spatially analyzed with the hypothetical 3D obstacle limitation surfaces (OLS) to identify the potential obstacles. Field surveying was then carried out to retrieve the accurate horizontal position and height of the obstacles. The results proved that the application of DSM could make considerable improvement in the efficiency of obstacle clearance surveying of aerodrome.


Author(s):  
X. Qiao ◽  
S. H. Lv ◽  
L. L. Li ◽  
X. J. Zhou ◽  
H. Y. Wang ◽  
...  

Compared to the wide use of digital elevation model (DEM), digital surface model (DSM) receives less attention because that it is composed by not only terrain surface, but also vegetations and man-made objects which are usually regarded as useless information. Nevertheless, these objects are useful for the identification of obstacles around an aerodrome. The primary objective of the study was to determine the applicability of DSM in obstacle clearance surveying of aerodrome. According to the requirements of obstacle clearance surveying at QT airport, aerial and satellite imagery were used to generate DSM, by means of photogrammetry, which was spatially analyzed with the hypothetical 3D obstacle limitation surfaces (OLS) to identify the potential obstacles. Field surveying was then carried out to retrieve the accurate horizontal position and height of the obstacles. The results proved that the application of DSM could make considerable improvement in the efficiency of obstacle clearance surveying of aerodrome.


Author(s):  
J. Michel ◽  
E. Sarrazin ◽  
D. Youssefi ◽  
M. Cournet ◽  
F. Buffe ◽  
...  

Abstract. This paper presents a new Multiview Stereo Pipeline (MVS), called CARS, dedicated to satellite imagery. This pipeline is intended for massive Digital Surface Model (DSM) production and has therefore been designed to maximize scalability robustness and performance. Those two properties have driven the design of the workflow as well as the choice of algorithms and parameter trends, making our pipeline unique with respect to existing solutions in literature. This paper intends to serve as a reference paper for the pipeline implementation, and therefore provides a detailed description of algorithms and workflow. It also demonstrates the pipeline robustness and stability in several use cases, and compares its accuracy with the state-of-the-art pipelines on a reference dataset.


Author(s):  
K. Gong ◽  
D. Fritsch

Nowadays, multiple-view stereo satellite imagery has become a valuable data source for digital surface model generation and 3D reconstruction. In 2016, a well-organized multiple view stereo publicly benchmark for commercial satellite imagery has been released by the John Hopkins University Applied Physics Laboratory, USA. This benchmark motivates us to explore the method that can generate accurate digital surface models from a large number of high resolution satellite images. In this paper, we propose a pipeline for processing the benchmark data to digital surface models. As a pre-procedure, we filter all the possible image pairs according to the incidence angle and capture date. With the selected image pairs, the relative bias-compensated model is applied for relative orientation. After the epipolar image pairs’ generation, dense image matching and triangulation, the 3D point clouds and DSMs are acquired. The DSMs are aligned to a quasi-ground plane by the relative bias-compensated model. We apply the median filter to generate the fused point cloud and DSM. By comparing with the reference LiDAR DSM, the accuracy, the completeness and the robustness are evaluated. The results show, that the point cloud reconstructs the surface with small structures and the fused DSM generated by our pipeline is accurate and robust.


Sign in / Sign up

Export Citation Format

Share Document