scholarly journals Experiment to Teach Multiple Melting Phenomena in Semicrystalline Polymers Using Differential Scanning Calorimetry

2021 ◽  
Vol 9 (3) ◽  
pp. 68-76
Author(s):  
Kathy L. Singfield ◽  
Ashley J. Rowe
2011 ◽  
Vol 284-286 ◽  
pp. 763-768
Author(s):  
Li Li Sun ◽  
Kun Hu ◽  
Lin Chen ◽  
Kang Zheng ◽  
Xing You Tian

Attapulgite(AT) was modified by grafting with butyl acrylate(BA) via polymerizations initiated by Gamma radiation. The polypropylene(PP)/AT nanocomposites were synthesized via melting extrude in a twin-screw extruder. The thermogravimetry(TG) and scanning electron microscopy (SEM) were used to assess the graft ratio of the hybrid materials and the dispersion of AT, respectively. Step-scan differential scanning calorimetry(SSDSC) was used to study the influence of AT on the crystallization and subsequent melting behavior. The results indicated that PP and PP/AT nanocomposites underwent multiple melting and secondary crystallization processes during heating. The melting behaviours of PP and PP/AT nanocomposites varied with the variation of crystallization temperature and AT content.


2014 ◽  
Vol 34 (9) ◽  
pp. 895-903 ◽  
Author(s):  
Izan R. Mustapa ◽  
Robert A. Shanks ◽  
Ing Kong

Abstract Poly(lactic acid) (PLA)-hemp-nanosilica (PHS) composites were prepared by impregnation of hemp woven fabric with PLA solution. Nanosilica was dispersed in the PLA solution to introduce a matrix reinforcing nanophase within the composite. The melting behavior of PLA composites was obtained by using differential scanning calorimetry (DSC) and modulated-temperature DSC (mT-DSC). Multiple melting which appeared in the non-isothermal heating curve showed that the temperature of a low melting peak increased when using a slower scanning rate. The incorporation of nanosilica in PLA composites affected the melting temperature (Tm) and sufficiently formed nucleation sites that promoted the growth of PLA crystals. Composites analyzed by a temperature-modulated program showed a broad exothermic peak before the melting peak in the non-reversing heat capacity and endothermic melting in the reversing heat capacity curve. This behavior was explained by a process of partial melting, recrystallization and remelting (mrr). The mT-DSC resolved that hemp fiber induced recrystallization and nanosilica acted as an effective nucleating agent, which promoted small and imperfect crystals that changed successively into more stable crystals through a melt-recrystallization process.


Sign in / Sign up

Export Citation Format

Share Document