scholarly journals Substitution mapping and characterization of brown planthopper resistance genes from indica rice variety, ‘PTB33’ (Oryza sativa L.)

2021 ◽  
Author(s):  
Cuong Dinh Nguyen ◽  
Shao-Hui Zheng ◽  
Sachiyo Sanada-Morimura ◽  
Masaya Matsumura ◽  
Hideshi Yasui ◽  
...  
Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 498
Author(s):  
Cuong D. Nguyen ◽  
Holden Verdeprado ◽  
Demeter Zita ◽  
Sachiyo Sanada-Morimura ◽  
Masaya Matsumura ◽  
...  

The brown planthopper (BPH: Nilaparvata lugens Stål.) is a major pest of rice, Oryza sativa, in Asia. Host plant resistance has tremendous potential to reduce the damage caused to rice by the planthopper. However, the effectiveness of resistance genes varies spatially and temporally according to BPH virulence. Understanding patterns in BPH virulence against resistance genes is necessary to efficiently and sustainably deploy resistant rice varieties. To survey BPH virulence patterns, seven near-isogenic lines (NILs), each with a single BPH resistance gene (BPH2-NIL, BPH3-NIL, BPH17-NIL, BPH20-NIL, BPH21-NIL, BPH32-NIL and BPH17-ptb-NIL) and fifteen pyramided lines (PYLs) carrying multiple resistance genes were developed with the genetic background of the japonica rice variety, Taichung 65 (T65), and assessed for resistance levels against two BPH populations (Hadano-66 and Koshi-2013 collected in Japan in 1966 and 2013, respectively). Many of the NILs and PYLs were resistant against the Hadano-66 population but were less effective against the Koshi-2013 population. Among PYLs, BPH20+BPH32-PYL and BPH2+BPH3+BPH17-PYL granted relatively high BPH resistance against Koshi-2013. The NILs and PYLs developed in this research will be useful to monitor BPH virulence prior to deploying resistant rice varieties and improve rice’s resistance to BPH in the context of regionally increasing levels of virulence.


2011 ◽  
Vol 124 (3) ◽  
pp. 485-494 ◽  
Author(s):  
Yongfu Qiu ◽  
Jianping Guo ◽  
Shengli Jing ◽  
Lili Zhu ◽  
Guangcun He

2020 ◽  
Vol 40 (10) ◽  
Author(s):  
Long He ◽  
Ling Zou ◽  
Qiuli Huang ◽  
Xichen Sheng ◽  
Weiren Wu ◽  
...  

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Yasumori Tamura ◽  
Makoto Hattori ◽  
Hirofumi Yoshioka ◽  
Miki Yoshioka ◽  
Akira Takahashi ◽  
...  

Hereditas ◽  
2009 ◽  
Vol 146 (2) ◽  
pp. 67-73 ◽  
Author(s):  
Yuqiang Liu ◽  
Changchao Su ◽  
Ling Jiang ◽  
Jun He ◽  
Han Wu ◽  
...  

2018 ◽  
Vol 14 (2) ◽  
pp. 75
Author(s):  
Muhamad Yunus ◽  
Diani Damayanti ◽  
Ahmad Dadang ◽  
Ahmad Warsun ◽  
Dani Satyawan ◽  
...  

<p>Brown planthopper (BPH) is a major rice pest in Indonesia. The most economical and effective approach to control the insect pest is by using resistant varieties. Exploring for resistance genes is, therefore, a prerequisite for effective breeding program for BPH resistance. This study aimed to map BPH resistance genes in Untup Rajab, an Indonesian local rice variety. Genetic map was constructed using an F2 population from a cross between TN-1 and Untup Rajab, and SNP markers from RiceLD SNP Chip. Phenotyping was performed using bulk seedling test on F2:3 seedlings against two BPH populations, i.e. X1 and S1. Four QTLs<br />were identified on chromosomes 5, 6, 8, and 11 with PVE values of 7.63%, 9.40%, 17.66%, and 3.05%, respectively. Relatively normal distribution of resistance phenotype and the relatively low PVE values indicate that Untup Rajab has a quantitative resistance to BPH with two different resistance loci identified for each BPH test population. The QTL on chromosome 8 overlaps with OsHI-LOX gene, which is associated with resistance to BPH, and adjacent to another QTL for resistance to green leafhopper. The QTL on chromosome 6 was found near OsPLDα4 and OsPLDα5 genes which are related to BPH resistance. Meanwhile, the QTL intervals on chromosome 5 and 11 did not overlap with any known BPH QTLs or genes, which make them attractive candidates for novel BPH resistance gene discovery.</p>


2012 ◽  
Vol 69 (7) ◽  
pp. 802-808 ◽  
Author(s):  
Jie Hu ◽  
Mingxing Cheng ◽  
Guanjun Gao ◽  
Qinglu Zhang ◽  
Jinghua Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document