scholarly journals The measurement of zinc protoporphyrin for iron deficiency anemia by hematofluorometer in children.

1993 ◽  
Vol 60 (2) ◽  
pp. 105-111
Author(s):  
Makoto Migita ◽  
Yoshitaka Fukunaga ◽  
Masao Yamamoto
1996 ◽  
Vol 244 (1) ◽  
pp. 91-101 ◽  
Author(s):  
Shan S. WongA ◽  
Ala S. Qutishat ◽  
Jason Lange ◽  
Terrie G. Gornet ◽  
L. Maximilian Buja

1994 ◽  
Vol 3 (6) ◽  
pp. 275-278
Author(s):  
Lubor Malina ◽  
Stanislav Janous˘ek ◽  
Ladislav Rosa ◽  
Rajmund Porkorny ◽  
Ladislav Pelech

1998 ◽  
Vol 44 (4) ◽  
pp. 800-804 ◽  
Author(s):  
Else J Harthoorn-Lasthuizen ◽  
Jan Lindemans ◽  
Mart M A C Langenhuijsen

Abstract Erythrocyte zinc protoporphyrin (ZPP) was measured in 102 women blood donors to evaluate its usefulness in screening for evolving iron deficiency anemia, a reason for the deferral of donors. The results were compared with serum ferritin determinations. Five women were deferred before their first donation and eight women were deferred after one or two donations. Women with increased ZPP values all had low serum ferritin concentrations, indicating iron-deficient erythropoiesis that was caused by iron depletion. The positive predictive value of an increased ZPP in predicting deferral of the donor after one or two donations was 75%, whereas a serum ferritin concentration ≤12 μg/L predicted deferral in 26% of the donors. The results indicate that the ZPP test can be recommended as a feasible and inexpensive predonation test to determine a subset of donors with iron-deficient erythropoiesis at risk of developing iron deficiency anemia.


Blood ◽  
1981 ◽  
Vol 58 (5) ◽  
pp. 963-968 ◽  
Author(s):  
E Vichinsky ◽  
K Kleman ◽  
S Embury ◽  
B Lubin

Abstract We determined the prevalence and optimal methods for laboratory diagnosis of iron deficiency anemia in patients with sickle cell disease. Laboratory investigations of 38 nontransfused and 32 transfused patients included transferrin saturation, serum ferritin, mean corpuscular volume (MCV), and free erythrocyte protoporphyrin (FEP). Response to iron supplementation confirmed the diagnosis of iron deficiency anemia in 16% of the nontransfused patients. None of the transfused patients were iron deficient. All iron-deficient patients (mean age 2.4 yr) had a low MCV, serum ferritin less than 25 ng/ml, transferrin saturation less than 15%, and FEP less than 90 micrograms/dl RBC. Following therapy, all parameters improved and the hemoglobin concentration increased greater than 2 g/dl. A serum ferritin below 25 ng/ml was the most reliable screening test for iron deficiency. There were 13% false positive results with transferrin saturation, 3% with MCV, and 62% with FEP. FEP values correlated strongly with reticulocyte counts. The high FEP was in part due to protoporphyrin IX and not completely due to zinc protoporphyrin, which is elevated in iron deficiency. We conclude that iron deficiency anemia is a potential problem in young nontransfused sickle cell patients. Serum ferritin below 25 ng/ml and low MCV are the most useful screening tests.


2015 ◽  
Vol 7 (2) ◽  
Author(s):  
Margreet Schoorl ◽  
Marianne Schoorl ◽  
Johannes Van Pelt ◽  
Piet C.M. Bartels

Hemocytometric parameters like red blood cell (RBC) count, mean red blood cell volume (MCV), reticulocyte count, red blood cell distribution width (RDW-SD) and zinc protoporphyrin (ZPP) are frequently established for discrimination between iron-deficiency anemia and thalassemia in subjects with microcytic erythropoiesis. However, no single marker or combination of tests is optimal for discrimination between iron-deficiency anemia and thalassemia. This is the reason why many algorithms have been introduced. However, application of conventional algorithms, only resulted in appropriate classification of 30-40% of subjects. In this mini-review the efficacy of innovative hematological parameters for detection of alterations in RBCs has been considered. It refers to parameters concerning hemoglobinization of RBCs and reticulocytes and the percentages microcytic and hypochromic RBCs, for discrimination between subjects with iron-deficiency anemia (IDA) or thalassemia as well as a combination of both. A new discriminating tool including the above mentioned parameters was developed, based on two precondition steps and discriminating algorithms. The percentage microcytic RBCs is considered in the first pre-condition step. MCV, RDW-SD and RBC count are applied in the second precondition step. Subsequently, new algorithms, including conventional as well as innovative hematological parameters, were assessed for subgroups with microcytic erythropoiesis. The new algorithms for IDA discrimination yielded results for sensitivity of 79%, specificity of 97%, positive and negative predictive values of 74% and 98% respectively. The algorithms for beta-thalassemia discrimination revealed similar results (74%, 98%, 75% and 99% respectively). We advocate that innovative algorithms, including parameters reflecting hemoglobinization of RBCs and reticulocytes, are integrated in an easily accessible software program linked to the hematology equipment to improve the discrimination between IDA and thalassemia.


Sign in / Sign up

Export Citation Format

Share Document