The diagnosis of iron deficiency anemia in sickle cell disease

Blood ◽  
1981 ◽  
Vol 58 (5) ◽  
pp. 963-968 ◽  
Author(s):  
E Vichinsky ◽  
K Kleman ◽  
S Embury ◽  
B Lubin

Abstract We determined the prevalence and optimal methods for laboratory diagnosis of iron deficiency anemia in patients with sickle cell disease. Laboratory investigations of 38 nontransfused and 32 transfused patients included transferrin saturation, serum ferritin, mean corpuscular volume (MCV), and free erythrocyte protoporphyrin (FEP). Response to iron supplementation confirmed the diagnosis of iron deficiency anemia in 16% of the nontransfused patients. None of the transfused patients were iron deficient. All iron-deficient patients (mean age 2.4 yr) had a low MCV, serum ferritin less than 25 ng/ml, transferrin saturation less than 15%, and FEP less than 90 micrograms/dl RBC. Following therapy, all parameters improved and the hemoglobin concentration increased greater than 2 g/dl. A serum ferritin below 25 ng/ml was the most reliable screening test for iron deficiency. There were 13% false positive results with transferrin saturation, 3% with MCV, and 62% with FEP. FEP values correlated strongly with reticulocyte counts. The high FEP was in part due to protoporphyrin IX and not completely due to zinc protoporphyrin, which is elevated in iron deficiency. We conclude that iron deficiency anemia is a potential problem in young nontransfused sickle cell patients. Serum ferritin below 25 ng/ml and low MCV are the most useful screening tests.

Blood ◽  
1981 ◽  
Vol 58 (5) ◽  
pp. 963-968 ◽  
Author(s):  
E Vichinsky ◽  
K Kleman ◽  
S Embury ◽  
B Lubin

We determined the prevalence and optimal methods for laboratory diagnosis of iron deficiency anemia in patients with sickle cell disease. Laboratory investigations of 38 nontransfused and 32 transfused patients included transferrin saturation, serum ferritin, mean corpuscular volume (MCV), and free erythrocyte protoporphyrin (FEP). Response to iron supplementation confirmed the diagnosis of iron deficiency anemia in 16% of the nontransfused patients. None of the transfused patients were iron deficient. All iron-deficient patients (mean age 2.4 yr) had a low MCV, serum ferritin less than 25 ng/ml, transferrin saturation less than 15%, and FEP less than 90 micrograms/dl RBC. Following therapy, all parameters improved and the hemoglobin concentration increased greater than 2 g/dl. A serum ferritin below 25 ng/ml was the most reliable screening test for iron deficiency. There were 13% false positive results with transferrin saturation, 3% with MCV, and 62% with FEP. FEP values correlated strongly with reticulocyte counts. The high FEP was in part due to protoporphyrin IX and not completely due to zinc protoporphyrin, which is elevated in iron deficiency. We conclude that iron deficiency anemia is a potential problem in young nontransfused sickle cell patients. Serum ferritin below 25 ng/ml and low MCV are the most useful screening tests.


1998 ◽  
Vol 44 (4) ◽  
pp. 800-804 ◽  
Author(s):  
Else J Harthoorn-Lasthuizen ◽  
Jan Lindemans ◽  
Mart M A C Langenhuijsen

Abstract Erythrocyte zinc protoporphyrin (ZPP) was measured in 102 women blood donors to evaluate its usefulness in screening for evolving iron deficiency anemia, a reason for the deferral of donors. The results were compared with serum ferritin determinations. Five women were deferred before their first donation and eight women were deferred after one or two donations. Women with increased ZPP values all had low serum ferritin concentrations, indicating iron-deficient erythropoiesis that was caused by iron depletion. The positive predictive value of an increased ZPP in predicting deferral of the donor after one or two donations was 75%, whereas a serum ferritin concentration ≤12 μg/L predicted deferral in 26% of the donors. The results indicate that the ZPP test can be recommended as a feasible and inexpensive predonation test to determine a subset of donors with iron-deficient erythropoiesis at risk of developing iron deficiency anemia.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3785-3785
Author(s):  
Oswaldo Castro ◽  
Adriana Medina ◽  
Peter Gaskin

Abstract One-third of adults with sickle cell disease (SCD) have echocardiographic (ECHO) evidence of pulmonary hypertension (PHTN), a complication associated with early mortality. Because the pulmonary artery pressures in most SCD patients with PHTN are only mildly elevated, the question arises whether such increases are primarily a reflection of the high cardiac output state that accompanies the anemia. Recently we treated a 45 year-old woman with homozygous sickle-cell disease and profound iron deficiency due to heavy menstrual flow. Two ECHOs were done while she was severely iron deficient (Hb 5 g/dl, MCV 57 fl, reticulocytes 72,407/mm3, serum bilirubin 0.5 mg/dl, iron 29 mcg/dl, transferrin 376 mg/dl, and ferritin 3.6 ng/ml). Her pulmonary artery systolic pressure (PAs) was calculated from the tricuspid regurgitant jet velocity (TRV) using the Bernoullie equation: 4(TRV3) + central venous pressure (assumed at 10 mm Hg). The PAs was normal, 24 mm Hg, even though the patient also had M-mode evidence of left ventricular diastolic dysfunction and a small pericardial effusion. Treatment with intravenous iron and red cell transfusion partially improved her iron deficiency and anemia (Hb 7 g/dl, MCV 67 fl, serum bilirubin 0.7 mg/dl, iron 54 mcg/dl, transferrin 322 mg/dl, and ferritin 33.9 ng/ml) but also increased her hemolytic rate: though LDH data are unavailable, the reticulocyte count rose to 117,900/mm3. Repeat ECHO exams at this time showed that her pulmonary artery systolic pressures increased to 35–36 mm Hg. These values are at or near the lower range of pulmonary artery systolic pressures (36–70 mm Hg) measured in SCD patients in whom PHTN was diagnosed at cardiac catheterization. The figure compares hematologic values, and pulmonary artery systolic pressure in our iron deficient SS patient at baseline and during treatment. This experience, though anecdotal, suggests that the PHTN in SCD is unrelated to the anemia per se and, by implication, also unrelated to the high cardiac output. The patient’s mild pulmonary systolic hypertension actually developed with improvement of her anemia. Our hypothesis is that when the patient’s iron deficiency was most severe, the low MCHC decreased Hb S polymerization and decreased hemolysis, as in other iron deficient SCD patients. Her relatively low hemolytic rate may have prevented the mild PHTN, which developed once treatment improved her iron deficiency but increased hemolysis. Our hypothesis is consistent also with an emerging new paradigm in sickle cell disease pathophysiology: a strong link between hemolysis-related nitric oxide system (NO) dysfunction and risks for pulmonary hypertension, leg ulcers, priapism, and death. In this context it is interesting that iron deficiency anemia up-regulates vascular nitric oxide synthase in animals. In humans iron deficiency increases NO production even in the absence of anemia. Hence, this patient’s iron depletion may have contributed to the maintenance of her low pulmonary pressures also by a direct NO-mediated vascular effect. Figure Figure


2019 ◽  
Vol 35 (5) ◽  
pp. 1065-1074 ◽  
Author(s):  
Wagner Rafael da Silva ◽  
Landulfo Silveira ◽  
Adriana Barrinha Fernandes

Anemia ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Betelihem Terefe ◽  
Asaye Birhanu ◽  
Paulos Nigussie ◽  
Aster Tsegaye

Iron deficiency anemia among pregnant women is a widespread problem in developing countries including Ethiopia, though its influence on neonatal iron status was inconsistently reported in literature. This cross-sectional study was conducted to compare hematologic profiles and iron status of newborns from mothers with different anemia status and determine correlation between maternal and neonatal hematologic profiles and iron status in Ethiopian context. We included 89 mothers and their respective newborns and performed complete blood count and assessed serum ferritin and C-reactive protein levels from blood samples collected from study participants. Maternal median hemoglobin and serum ferritin levels were 12.2 g/dL and 47.0 ng/mL, respectively. The median hemoglobin and serum ferritin levels for the newborns were 16.2 g/dL and 187.6 ng/mL, respectively. The mothers were classified into two groups based on hemoglobin and serum ferritin levels as iron deficient anemic (IDA) and nonanemic (NA) and newborns of IDA mothers had significantly lower levels of serum ferritin (P=0.017) and hemoglobin concentration (P=0.024). Besides, newborns’ ferritin and hemoglobin levels showed significant correlation with maternal hemoglobin (P=0.018;P=0.039) and ferritin (P=0.000;P=0.008) levels. We concluded that maternal IDA may have an effect on the iron stores of newborns.


2000 ◽  
Vol 11 (3) ◽  
pp. 530-538
Author(s):  
ANATOLE BESARAB ◽  
NEETA AMIN ◽  
MUHAMMAD AHSAN ◽  
SUSAN E. VOGEL ◽  
GARY ZAZUWA ◽  
...  

Abstract. Iron deficiency limits the efficacy of recombinant human erythropoietin (rhEPO) therapy in end-stage renal disease (ESRD) patients. Functional iron deficiency occurs with serum ferritin >500 ng/ml and/or transferrin saturation (TSAT) of 20 to 30%. This study examines the effects of a maintenance intravenous iron dextran (ivID) protocol that increased TSAT in ESRD hemodialysis patients from conventional levels of 20 to 30% (control group) to those of 30 to 50% (study group) for a period of 6 mo. Forty-two patients receiving chronic hemodialysis completed a 16- to 20-wk run-in period, during which maintenance ivID and rhEPO were administered in amounts to achieve average TSAT of 20 to 30% and baseline levels of hemoglobin of 9.5 to 12.0 g/dl. After the run-in period, 19 patients randomized to the control group received ivID doses of 25 to 150 mg/wk for 6 mo. Twenty-three patients randomized to the study group received four to six loading doses of ivID, 100 mg each, over a 2-wk period to achieve a TSAT >30% followed by 25 to 150 mg weekly to maintain TSAT between 30 and 50% for 6 mo. Both regimens were effective in maintaining targeted hemoglobin levels. Fifteen patients in the control group and 17 patients in the study group finished the study in which the primary outcome parameter by intention to treat analysis was the rhEPO dose needed to maintain prestudy hemoglobin levels. Maintenance ivID requirements in the study group increased from 176 to 501 mg/mo and were associated with a progressive increase in serum ferritin to 658 ng/ml. Epoetin dose requirements for the study group decreased by the third month and remained 40% lower than for the control group, resulting in an overall cost savings in managing the anemia. Secondary indicators of iron-deficient erythropoiesis were also assessed. Zinc protoporphyrin did not change in either group. Reticulocyte hemoglobin content increased only in the study group from 28.5 to 30.1 pg. It is concluded that maintenance of TSAT between 30 and 50% reduces rhEPO requirements significantly over a 6-mo period.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4897-4897
Author(s):  
Hassan A. Al-Jafar ◽  
S Al-Fadhli ◽  
Althallab F ◽  
Mubark Al Ageeli

Abstract Hypoferritinemia Without Anemia The Possible Diagnostic Thought Hassan Al-Jafar , Saud Al-Fadli , Fatma Al-Thelab , Mubark Al-Aqeel Introduction : Iron metabolism still an active area in research work which provide more knowledge of aetiology and pathogenesis of the diseases and provide new treatment methods based on the new research results . HWA is one of the metabolic disorders where all the investigations are withen normal reference ranges . HWA patients could have long standing complain , while few HWA patients have no complains . The normal all results make HWA a hidden disease with lack in the exact underling cause . Iron deficiency anemia ( IDA ) and latent iron deficiency anemia ( LIDA ) are easy to diagnose from the clinical and the laboratory results , where IDA has anemia and LIDA has at least one paremeter in complete blood count that indicate a stage of pre-iron deficiency anemia . HWA desease has normal results except low ferritin level , ehat make pre-pre-IDA or pre-LIDA with normal transferrin saturation a stutus which was not described before . In the letreture serum ferritin found to be low in canins due to autoantibodies , also there could be another factors which not yet known that may affect iron metabolism and causing HWA . Aim: This research project is looking for interpretation for HWA to treat it by methods other than iron or iron infusion as many unpleasant and side effects accompanied both oral and intravenous iron treatment. Methodology and tools: From our hospital data and from the outpatient department 75 Patients 36 male and 39 females were reviewed to detect the variations of complete blood count parameters in comparison with iron status. Tools: Complete blood count (CBC), HPLC, serum iron, serum ferritin, transferrin. Including criteria: Adult male and female patients, normal HPLC results. Excluding criteria: Abnormal HPLC, Family history of hemoglobinopathy disorders for patients investigated prospectively, patients on iron treatment excluded from this study. Results: In IDA group usually all the parameters indicate IDA. In LIDA group at least one parameter or more indicate iron deficiency. In HWA group only, ferritin is low and transferrin saturation is normal while it is expected to be low if HWA underling aetiology is iron deficiency. Table [ 1] Conclusion: IDA and LIDA are easly diagnosed , while HWA has only low serum ferritin which is not routinely done. In HWA the results are not going with the usual parameters of iron metabolism and homeostasis, when low ferritin found with normal transferrin saturation in the same sampling days. HWA could be just an early pre- LIDA or may be a low ferritin reference range in some countries especially when the patient has no complains, or the body could have another unknow storage mechanisms other than ferritin. HWA also might be hormonal deficiency which reduce acute reactive proteins which could affect serum ferritin level or HWA could be an antibody against ferritin which has no influence on serum iron, but it renders serum ferritin lower than normal. HWA is important from many aspects , first it is a hidden disorder which need to be known by the physicians for diagnosis and treatment and it is important from academic point of view to answer to its indecisive aetiology and pathogenesis especially when it has a controversy in low ferritin and normal transferrin saturation . Adding more research tools as hepcidin test could provide more information to understand HWA disorder better. References: 1-Wei Wang , Mary Knovich , Lan G.Coffman Frank M, Torti , Suzy V. Torti , Serum ferritin :Past , Present and future Biochim Biophys acta , 2010 August ; 1800 (8) : 760-769 2-Hassan Al-Jafar, HWA: Hypoferritinemia without a hidden hematology disorder, journal of family medicine and primary care 2017, volume: 6, issue: 1 p 69-72 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2571-2571
Author(s):  
Oswaldo L Castro ◽  
Mehdi Nouraie ◽  
Lori Luchtman-Jones ◽  
Xiaomei Niu ◽  
Caterina Minniti ◽  
...  

Abstract Abstract 2571 Poster Board II-548 The role of iron in the pathophysiology of sickle cell disease (SCD) is complex and not fully understood. Iron overload is associated with disease severity primarily because multiple transfusions are linked to a severe SCD clinical course. Additionally, hemolysis, also associated with disease severity, increases iron absorption. Iron deficiency decreases red cell MCHC, which lowers Hb S polymerization and thus may improve the clinical manifestations of SCD. Such a hypothesis is supported by our recent observation of a homozygous SCD adult with iron deficiency anemia and a very low hemolytic rate that increased dramatically with iron supplementation. This experience and similar case reports from the literature led us to examine the relationship of ferritin levels with hemolysis and other laboratory and clinical parameters in a group of non-iron overloaded children with sickle cell disease. All subjects in this analysis were enrolled in a prospective study of the prevalence and significance of pulmonary hypertension in children with SCD (PUSH). Because of the known association of high serum ferritin with multiple transfusions and with a severe clinical course in this and other SCD populations, we excluded children who had ferritin concentrations of 242 ng/ml or higher. This cut-off value is 3 SDs above the geometric mean of the ferritin concentrations in a group of 42 age, sex, and ethnicity matched control children without SCD. Hence the group of sickle cell children with ferritin levels of < 242 ng/ml should include only those with iron deficiency or with normal iron stores. The table shows correlations between serum ferritin (natural log) and age, hematologic, iron status, and hemolytic parameters, including a previously described hemolytic component derived by principal component analysis from reticulocyte count, LDH, AST, and bilirubin. In this group of non-iron overloaded SCD children and adolescents (median age 12 y, range 3–20 y), lower serum ferritin was related to higher serum transferrin and to lower serum iron and MCV, documenting that serum ferritin was reflective of iron status. Hemolytic parameters such as reticulocyte count and the hemolytic component were significantly lower with lower ferritin levels. In multivariable analysis these relationships remained statistically significant (P for MCV and ferritin: 0.003, P for hemolytic component and ferritin: 0.044) even after correcting for alpha-thalassemia, which is known to also lower MCV and hemolysis, and for markers of inflammation (WBC) and liver disease (ALT), which could increase the ferritin level regardless of iron stores. Ferritin was significantly lower in older subjects, probably as a result of growth-related red cell mass expansion in the presence of marginal iron stores. Our results thus suggest that low iron stores are independently associated with decreased hemolysis. Low hemolysis is likely to be beneficial in SCD by reducing hemolysis-related vasculopathy, which in adult SCD patients predicts an increased risk of pulmonary hypertension, leg ulcers, priapism, and death. Whether iron status per se plays a role in the pathogenesis of SCD vasculopathy is not known. In non-SCD adults, decreasing iron stores by frequent blood donation has beneficial effects on endothelial function and cardiovascular disease even within the normal range for iron stores. Hence, lowering iron stores could benefit SCD subjects by an additional, hemolysis-independent mechanism. Therapeutic iron depletion is not an option for children because of their need for adequate iron stores for optimal physical and neuro-psychological development. However, carefully controlled studies should be considered to reduce iron stores and so decrease the hemolytic rate in adults with SCD. It may be possible to achieve levels of iron reduction that lower hemolysis but do not worsen the anemia: in our study subjects, low iron stores were not associated with increased anemia and the red cell counts were actually higher with lower ferritin levels. Disclosures: Gordeuk: TRF Pharma: Research Funding; Merck: Research Funding; Biomarin pharmaceutical company: Research Funding; Novartis: Speakers Bureau.


Sign in / Sign up

Export Citation Format

Share Document