Electrical Energy Production Through Microbial Fuel Cell using Industrial Wastewater Fisheries

Author(s):  
Mujtahid Alfajri ◽  
Nilam Puspa Ruspatti ◽  
Andri Bagus Arianto
2020 ◽  
Vol 6 (10) ◽  
pp. 2776-2788
Author(s):  
Thanh Ngoc-Dan Cao ◽  
Shiao-Shing Chen ◽  
Hau-Ming Chang ◽  
Thanh Xuan Bui ◽  
I-Chieh Chien

Water recovery from wastewater was accomplished simultaneously with electrical energy production by the novel integration of distillation membrane and microbial fuel cell to create a system called membrane distillation microbial fuel cell.


1988 ◽  
Vol 110 (2) ◽  
pp. 107-112 ◽  
Author(s):  
J. H. Morehouse

Two thermodynamic power cycles are analytically examined for future engineering feasibility. These power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The first cycle uses a thermal energy input at over 2000K to thermally dissociate the water. The second cycle dissociates the water using an electrolyzer operating at high temperature (1300K) which receives both thermal and electrical energy as inputs. The results show that while the processes and devices of the 2000K thermal system exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development, with the requirements for very high electrolyzer and fuel cell efficiencies seen as determining the feasibility of this system.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2312
Author(s):  
Jeongjin Yeo ◽  
Taeyoung Kim ◽  
Jae Jang ◽  
Yoonseok Yang

Power management systems (PMSs) are essential for the practical use of microbial fuel cell (MFC) technology, as they replace the unstable stacking of MFCs with step-up voltage conversion. Maximum-power extraction technology could improve the power output of MFCs; however, owing to the power consumption of the PMS operation, the maximum-power extraction point cannot deliver maximum power to the application load. This study proposes a practical power extraction for single MFCs, which reserves more electrical energy for an application load than conventional maximum power-point tracking (MPPT). When experimentally validated on a real MFC, the proposed method delivered higher output power during a longer PMS operation time than MPPT. The maximum power delivery enables more effective power conditioning of various micro-energy harvesting systems.


Sign in / Sign up

Export Citation Format

Share Document