scholarly journals Split and Non-Split Dominator Chromatic Numbers and Related Parameters

2011 ◽  
Vol 10 (1) ◽  
pp. 52-62
Author(s):  
K Kavitha ◽  
N G David ◽  
N. Selvi

A proper graph coloring is defined as coloring the nodes of a graph with the minimum number of colors without any two adjacent nodes having the same color.  Dominator coloring of G is a proper coloring in which every vertex of G dominates every vertex of at least one color class.  In this paper, new parameters, namely strong split and non-split dominator chromatic numbers and block, cycle, path non-split dominator chromatic numbers are introduced.  These parameters are obtained for different classes of graphs and also interesting results are established.

Author(s):  
R. Rangarajan ◽  
David. A. Kalarkop

Global dominator coloring of the graph [Formula: see text] is the proper coloring of [Formula: see text] such that every vertex of [Formula: see text] dominates atleast one color class as well as anti-dominates atleast one color class. The minimum number of colors required for global dominator coloring of [Formula: see text] is called global dominator chromatic number of [Formula: see text] denoted by [Formula: see text]. In this paper, we characterize trees [Formula: see text] of order [Formula: see text] [Formula: see text] such that [Formula: see text] and also establish a strict upper bound for [Formula: see text] for a tree of even order [Formula: see text] [Formula: see text]. We construct some family of graphs [Formula: see text] with [Formula: see text] and prove some results on [Formula: see text]-partitions of [Formula: see text] when [Formula: see text].


Let G = (V, E) be a finite, connected, undirected with no loops, multiple edges graph. Then the power dominator coloring of G is a proper coloring of G, such that each vertex of G power dominates every vertex of some color class. The minimum number of color classes in a power dominator coloring of the graph, is the power dominator chromatic number . Here we study the power dominator chromatic number for some special graphs such as Bull Graph, Star Graph, Wheel Graph, Helm graph with the help of induction method and Fan Graph. Suitable examples are provided to exemplify the results.


2019 ◽  
Vol 11 (06) ◽  
pp. 1950066
Author(s):  
S. Arumugam ◽  
K. Raja Chandrasekar

A dominator coloring (respectively, total dominator coloring) of a graph [Formula: see text] is a proper coloring [Formula: see text] of [Formula: see text] such that each closed neighborhood (respectively, open neighborhood) of every vertex of [Formula: see text] contains a color class of [Formula: see text] The minimum number of colors required for a dominator coloring (respectively, total dominator coloring) of [Formula: see text] is called the dominator chromatic number (respectively, total dominator chromatic number) of [Formula: see text] and is denoted by [Formula: see text] (respectively, [Formula: see text]). In this paper, we prove that the dominator coloring problem and the total dominator coloring problem are solvable in linear time for trestled graphs.


Author(s):  
Soumia AIOULA ◽  
Mustapha CHELLALI ◽  
Noureddine Ikhlef-Eschouf

A dominator coloring is a proper coloring of the vertices of a graph such that each vertex of the graph dominates all vertices of at least one color class (possibly its own class). The dominator chromatic number of a graph G is the minimum number of color classes in a dominator coloring of G. In this paper, we determine the exact value of the dominator chromatic number of a subclass of forests which we call, generalized caterpillars forest, where every vertex of degree at least three is a support vertex.


Author(s):  
A. Mohammed Abid ◽  
T. R. Ramesh Rao

A strict strong coloring of a graph [Formula: see text] is a proper coloring of [Formula: see text] in which every vertex of the graph is adjacent to every vertex of some color class. The minimum number of colors required for a strict strong coloring of [Formula: see text] is called the strict strong chromatic number of [Formula: see text] and is denoted by [Formula: see text]. In this paper, we characterize the results on strict strong coloring of Mycielskian graphs and iterated Mycielskian graphs.


2015 ◽  
Vol 15 (01n02) ◽  
pp. 1550004 ◽  
Author(s):  
P. C. LISNA ◽  
M. S. SUNITHA

A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph G, denoted by [Formula: see text], is the maximal integer k such that G has a b-coloring with k colors. In this paper, the b-chromatic numbers of the coronas of cycles, star graphs and wheel graphs with different numbers of vertices, respectively, are obtained. Also the bounds for the b-chromatic number of corona of any two graphs is discussed.


2015 ◽  
Vol 07 (04) ◽  
pp. 1550043 ◽  
Author(s):  
B. S. Panda ◽  
Arti Pandey

In a graph [Formula: see text], a vertex [Formula: see text] dominates a vertex [Formula: see text] if either [Formula: see text] or [Formula: see text] is adjacent to [Formula: see text]. A subset of vertex set [Formula: see text] that dominates all the vertices of [Formula: see text] is called a dominating set of graph [Formula: see text]. The minimum cardinality of a dominating set of [Formula: see text] is called the domination number of [Formula: see text] and is denoted by [Formula: see text]. A proper coloring of a graph [Formula: see text] is an assignment of colors to the vertices of [Formula: see text] such that any two adjacent vertices get different colors. The minimum number of colors required for a proper coloring of [Formula: see text] is called the chromatic number of [Formula: see text] and is denoted by [Formula: see text]. A dominator coloring of a graph [Formula: see text] is a proper coloring of the vertices of [Formula: see text] such that every vertex dominates all the vertices of at least one color class. The minimum number of colors required for a dominator coloring of [Formula: see text] is called the dominator chromatic number of [Formula: see text] and is denoted by [Formula: see text]. In this paper, we study the dominator chromatic number for the proper interval graphs and block graphs. We show that every proper interval graph [Formula: see text] satisfies [Formula: see text], and these bounds are sharp. For a block graph [Formula: see text], where one of the end block is of maximum size, we show that [Formula: see text]. We also characterize the block graphs with an end block of maximum size and attaining the lower bound.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Manjula T. ◽  
Rajeswari R. ◽  
Praveenkumar T.R.

Purpose The purpose of this paper is to assess the application of graph coloring and domination to solve the airline-scheduling problem. Graph coloring and domination in graphs have plenty of applications in computer, communication, biological, social, air traffic flow network and airline scheduling. Design/methodology/approach The process of merging the concept of graph node coloring and domination is called the dominator coloring or the χ_d coloring of a graph, which is defined as a proper coloring of nodes in which each node of the graph dominates all nodes of at least one-color class. Findings The smallest number of colors used in dominator coloring of a graph is called the dominator coloring number of the graph. The dominator coloring of line graph, central graph, middle graph and total graph of some generalized Petersen graph P_(n ,1) is obtained and the relation between them is established. Originality/value The dominator coloring number of certain graph is obtained and the association between the dominator coloring number and domination number of it is established in this paper.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hongyan Li ◽  
Xianfeng Ding ◽  
Jiang Lin ◽  
Jingyu Zhou

Abstract With the development of economy, more and more people travel by plane. Many airports have added satellite halls to relieve the pressure of insufficient boarding gates in airport terminals. However, the addition of satellite halls will have a certain impact on connecting flights of transit passengers and increase the difficulty of reasonable allocation of flight and gate in airports. Based on the requirements and data of question F of the 2018 postgraduate mathematical contest in modeling, this paper studies the flight-gate allocation of additional satellite halls at airports. Firstly, match the seven types of flights with the ten types of gates. Secondly, considering the number of gates used and the least number of flights not allocated to the gate, and adding the two factors of the overall tension of passengers and the minimum number of passengers who failed to transfer, the multi-objective 0–1 programming model was established. Determine the weight vector $w=(0.112,0.097,0.496,0.395)$ w = ( 0.112 , 0.097 , 0.496 , 0.395 ) of objective function by entropy value method based on personal preference, then the multi-objective 0–1 programming model is transformed into single-objective 0–1 programming model. Finally, a graph coloring algorithm based on parameter adjustment is used to solve the transformed model. The concept of time slice was used to determine the set of time conflicts of flight slots, and the vertex sequences were colored by applying the principle of “first come first serve”. Applying the model and algorithm proposed in this paper, it can be obtained that the average value of the overall tension degree of passengers minimized in question F is 35.179%, the number of flights successfully allocated to the gate maximized is 262, and the number of gates used is minimized to be 60. The corresponding flight-gate difficulty allocation weight is $\alpha =0.32$ α = 0.32 and $\beta =0.40$ β = 0.40 , and the proportion of flights successfully assigned to the gate is 86.469%. The number of passengers who failed to transfer was 642, with a failure rate of 23.337%.


Author(s):  
Fairouz Beggas ◽  
Hamamache Kheddouci ◽  
Walid Marweni

In this paper, we introduce and study a new coloring problem of graphs called the double total dominator coloring. A double total dominator coloring of a graph [Formula: see text] with minimum degree at least 2 is a proper vertex coloring of [Formula: see text] such that each vertex has to dominate at least two color classes. The minimum number of colors among all double total dominator coloring of [Formula: see text] is called the double total dominator chromatic number, denoted by [Formula: see text]. Therefore, we establish the close relationship between the double total dominator chromatic number [Formula: see text] and the double total domination number [Formula: see text]. We prove the NP-completeness of the problem. We also examine the effects on [Formula: see text] when [Formula: see text] is modified by some operations. Finally, we discuss the [Formula: see text] number of square of trees by giving some bounds.


Sign in / Sign up

Export Citation Format

Share Document