Temperature Field Calculation and Influencing Factors Analysis for Concrete Hollow Piers Under Solar Radiation

2013 ◽  
Vol 10 (4) ◽  
pp. 1007-1016
Author(s):  
Bo Fu



2012 ◽  
Vol 178-181 ◽  
pp. 2006-2012
Author(s):  
Yu Dong Nie ◽  
Wei Zhang ◽  
Zong Lin Wang

Based on the Nenjiang Bridge located in the Qi-Gan expressway and using the finite element software ANSYS, we analysis the influences of solar radiation, free air temperature, inside temperature, wind speed, thermal conductivity of concrete, section height, flange plate length and bridge pavement on the temperature field of PC box-girder in this paper. And the solar radiation, thermal conductivity of concrete and bridge pavement is presented as the leading factors for the temperature field of PC box-girder.



2011 ◽  
Vol 675-677 ◽  
pp. 987-990
Author(s):  
Ling Tang ◽  
Xu Dong Wang ◽  
Hai Jing Zhao ◽  
Man Yao

In this paper, the flow, heat transfer and stress during solidification process of the machine tool bed weighed about 2.5ton that has been optimized by structural topologymethod, was calculated with ProCAST software, and the causes of the crack forming in the casting of the machine tool bed was analysed. According to the calculation results, the structural design of the local part where cracks tends to form has been improved, and the heat transfer and the stress are calculated again. By comparing the temperature field with filling of molten cast iron and without filling, it has been found that there was little effect of filling on the results of temperature distribution of the cast, therefore the effect of filling can be ignored in the following temperature field calculation to save computation time. The model has been simplified in the stress field calculation with considering the complexity of the machine tool bed and the cost of computation. Then, the merits and demerits of the original design and the improved design are compared and analyzed depending on the calculated temperature and stress results. It is suggested that the improved one could get a more uniform temperature distribution and then the trend of the crack occurring can be greatly reduced. These results could provide a guide for the actual casting production, achieving the scientific control of the production of castings, ensuring the quality of the castings.



2021 ◽  
Vol 1791 (1) ◽  
pp. 012072
Author(s):  
S V Fedorov ◽  
A S Tolstukha ◽  
I V Fedorov ◽  
V V Zhukovskyy


Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 3588-3604
Author(s):  
Wenying Zhang ◽  
Xiangzhi Xu ◽  
Yu Zheng ◽  
Shuangshuang Wang ◽  
Yuanqi Li


2021 ◽  
Vol 21 (11) ◽  
pp. 293
Author(s):  
Shan-Xiang Wei ◽  
De-Qing Kong ◽  
Qi-Ming Wang

Abstract The non-uniform temperature distribution of the main reflector of a large radio telescope may cause serious deformation of the main reflector, which will dramatically reduce the aperture efficiency of a radio telescope. To study the non-uniform temperature field of the main reflector of a large radio telescope, numerical calculations including thermal environment factors, the coefficients on convection and radiation, and the shadow boundary of the main reflector are first discussed. In addition, the shadow coverage and the non-uniform temperature field of the main reflector of a 70-m radio telescope under solar radiation are simulated by finite element analysis. The simulation results show that the temperature distribution of the main reflector under solar radiation is very uneven, and the maximum of the root mean square temperature is 12.3°C. To verify the simulation results, an optical camera and a thermal imaging camera are used to measure the shadow coverage and the non-uniform temperature distribution of the main reflector on a clear day. At the same time, some temperature sensors are used to measure the temperature at some points close to the main reflector on the backup structure. It has been verified that the simulation and measurement results of the shadow coverage on the main reflector are in good agreement, and the cosine similarity between the simulation and the measurement is above 90%. Despite the inevitable thermal imaging errors caused by large viewing angles, the simulated temperature field is similar to the measured temperature distribution of the main reflector to a large extent. The temperature trend measured at the test points on the backup structure close to the main reflector without direct solar radiation is consistent with the simulated temperature trend of the corresponding points on the main reflector with the solar radiation. It is credible to calculate the temperature field of the main reflector through the finite element method. This work can provide valuable references for studying the thermal deformation and the surface accuracy of the main reflector of a large radio telescope.



2018 ◽  
Vol 38 ◽  
pp. 03020 ◽  
Author(s):  
Zheng Si ◽  
Qian Zhang ◽  
Ling Zhi Huang ◽  
Dan Yang

Most existing temperature field calculation programs have relative defects. In the present paper, based on merits of ANSYS platform, a temperature field calculation program of mass concrete structure is developed and demonstrated. According to actual pouring progress and thermodynamic parameters, a roller-compacted concrete dam is simulated. The difference of maximum temperature between calculated and measured values of measuring points is less than 1.8°C. Furthermore, the relative difference is -5%–5%. This result shows that the calculation program developed based on ANSYS platform can simulate and calculate the temperature field of mass concrete structure.



Sign in / Sign up

Export Citation Format

Share Document