Non-uniform temperature distribution of the main reflector of a large radio telescope under solar radiation

2021 ◽  
Vol 21 (11) ◽  
pp. 293
Author(s):  
Shan-Xiang Wei ◽  
De-Qing Kong ◽  
Qi-Ming Wang

Abstract The non-uniform temperature distribution of the main reflector of a large radio telescope may cause serious deformation of the main reflector, which will dramatically reduce the aperture efficiency of a radio telescope. To study the non-uniform temperature field of the main reflector of a large radio telescope, numerical calculations including thermal environment factors, the coefficients on convection and radiation, and the shadow boundary of the main reflector are first discussed. In addition, the shadow coverage and the non-uniform temperature field of the main reflector of a 70-m radio telescope under solar radiation are simulated by finite element analysis. The simulation results show that the temperature distribution of the main reflector under solar radiation is very uneven, and the maximum of the root mean square temperature is 12.3°C. To verify the simulation results, an optical camera and a thermal imaging camera are used to measure the shadow coverage and the non-uniform temperature distribution of the main reflector on a clear day. At the same time, some temperature sensors are used to measure the temperature at some points close to the main reflector on the backup structure. It has been verified that the simulation and measurement results of the shadow coverage on the main reflector are in good agreement, and the cosine similarity between the simulation and the measurement is above 90%. Despite the inevitable thermal imaging errors caused by large viewing angles, the simulated temperature field is similar to the measured temperature distribution of the main reflector to a large extent. The temperature trend measured at the test points on the backup structure close to the main reflector without direct solar radiation is consistent with the simulated temperature trend of the corresponding points on the main reflector with the solar radiation. It is credible to calculate the temperature field of the main reflector through the finite element method. This work can provide valuable references for studying the thermal deformation and the surface accuracy of the main reflector of a large radio telescope.

2014 ◽  
Vol 22 (4) ◽  
pp. 970-978 ◽  
Author(s):  
钱宏亮 QIAN Hong-liang ◽  
柳叶 LIU Ye ◽  
范峰 FAN Feng ◽  
金晓飞 JIN Xiao-fei

2012 ◽  
Vol 57 (4) ◽  
pp. 1111-1116 ◽  
Author(s):  
M. Maj ◽  
W. Oliferuk

In the present paper the onset of plastic strain localization was determined using two independent methods based on strain and temperature field analysis. The strain field was obtained from markers displacement recorded using visible light camera. In the same time, on the other side of the specimen, the temperature field was determined by means of infrared camera. The objective of this work was to specify the conditions when the non-uniform temperature distribution can be properly used as the indicator of plastic strain localization. In order to attain the objective an analysis of strain and temperature fields for different deformation rates were performed. It has been shown, that for given experimental conditions, the displacement rate 2000 mm/min is a threshold, above which the non-uniform temperature distribution can be used as the indicator of plastic strain localization.


2020 ◽  
Vol 10 (7) ◽  
pp. 2445
Author(s):  
Deshen Chen ◽  
Hongliang Qian ◽  
Huajie Wang ◽  
Wucheng Xu ◽  
Jingfang Li

The temperature of spatial structures under construction can have a significant non-uniform distribution induced by intense solar radiation. This temperature distribution affects the component assembly and results in closure difficulties, potentially causing safety hazards. A spatial grid structure model was designed and subjected to temperature field test under sunlight to study the temperature distribution of the structure and for comparison with numerical simulation methods. The distribution characteristics and the time-varying laws were analyzed based on the test data. Then, the ray-casting algorithm was introduced to analyze the shadow influence between members, so that the temperature distribution of the model was simulated accurately, which was verified by the test data. The results show that the spatial grid structure had an obvious non-uniform temperature distribution, with a maximum temperature rise of 16 °C when compared with ambient temperature and a maximum temperature difference between members of 11 °C. The variation laws were gained both from the test and the numerical simulation. The numerical simulation method proposed herein can be used to calculate the shadow distribution and the temperature field of the structure effectively. The research methods and conclusions can provide valuable references for thermal design, monitoring, and control of spatial grid structures.


Sign in / Sign up

Export Citation Format

Share Document