Issues of Safety and Civil Liability Insurance for Nuclear Damage from Small Nuclear Power Plants

2019 ◽  
Vol 64 (6) ◽  
pp. 31-36
Author(s):  
V. Demin ◽  
A. Golosnaya ◽  
S. Korolev ◽  
V. Kuznetsov ◽  
V. Makarov ◽  
...  

Purpose: To study the possibility of achieving assured safety for the environment and public in all modes of operation of small nuclear power plants (SNPP) and providing real civil liability insurance for nuclear risks at reasonable financial costs. Material and methods: Particular attention on small nuclear power plants is driven by regional development, local communities and productions, which are not covered by centralized transport and energy supply. The peculiar properties and benefits of energy production at SNPP are considered, including: the possibility of locating in remote regions; the short construction period and the modular structure of SNPP; availability of potential to improve safety and reliability; reducing the size of the sanitary protection zone up to the boundaries of the technological site; the reality of liability insurance (full financial responsibility of the operator) for nuclear damage to third parties caused by an accident at SNPP at reasonable financial costs; industrial serial production; ability to move the entire nuclear power plants with small modular reactors in the assembled form, etc. A comparative analysis of the technical characteristics of the SNPP and a conventional nuclear power plant from a safety perspective is made. Results: The results of the SNPP safety analysis performed on the basis of the design documentation of the floating nuclear power plant “Akademik Lomonosov” is presented, with particular attention to assessing the consequences of design and beyond design basis accidents, in terms of probabilistic safety analysis and assessment of the maximum possible damage to third parties. The maximum possible damage to third parties from severe accidents is estimated to be about 0.5 billion RUR, which is hundreds of times less than damage from a catastrophic accident at a conventional NPP. Estimated costs for insurance of damage to third parties from an accident at SNPP will not exceed 1 kopeck/kWh. Possible approaches to civil liability insurance for nuclear risks and aspects of legal support are considered. Conclusions: The results of the analysis allow to conclude that it is possible to provide in the future: the achievement of practically assured safety of the SNPP for the environment and the public in normal operation and possible design and beyond design basis accidents; real civil liability insurance for nuclear risks of SNPP at reasonable financial costs.

2021 ◽  
Author(s):  
Li Liang ◽  
Pan Rong ◽  
Ren Guopeng ◽  
Zhu Xiuyun

Abstract Almost all nuclear power plants in the world are equipped with seismic instrument system, especially the third generation nuclear power plants in China. When the ground motion measured by four time history accelerometers of containment foundation exceeds the preset threshold, the automatic shutdown trigger signal will be generated. However, from the seismic acceleration characteristics, isolated and prominent single high frequency will be generated the acceleration peak, which has no decisive effect on the seismic response, may cause false alarm, which has a certain impact on the smooth operation of nuclear power plant. According to the principle of three elements of ground motion, this paper puts forward a method that first selects the filtering frequency band which accords with the structural characteristics of nuclear power plants, then synthesizes the three axial acceleration time history, and finally selects the appropriate acceleration peak value for threshold alarm. The results show that the seismic acceleration results obtained by this method can well represent the actual magnitude of acceleration, and can solve the problem of false alarm due to the randomness of single seismic wave, and can be used for automatic reactor shutdown trigger signal of seismic acceleration.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022020
Author(s):  
Jiahuan Yu ◽  
Xiaofeng Zhang

Abstract With the development of the nuclear energy industry and the increasing demand for environmental protection, the impact of nuclear power plant radiation on the environment has gradually entered the public view. This article combs the nuclear power plant radiation environmental management systems of several countries, takes the domestic and foreign management of radioactive effluent discharge from nuclear power plants as a starting point, analyses and compares the laws and standards related to radioactive effluents from nuclear power plants in France, the United States, China, and South Korea. In this paper, the management improvement of radioactive effluent discharge system of Chinese nuclear power plants has been discussed.


2018 ◽  
Vol 4 (4) ◽  
pp. 251-256 ◽  
Author(s):  
Sergey Shcheklein ◽  
Ismail Hossain ◽  
Mohammad Akbar ◽  
Vladimir Velkin

Bangladesh lies in a tectonically active zone. Earlier geological studies show that Bangladesh and its adjoining areas are exposed to a threat of severe earthquakes. Earthquakes may have disastrous consequences for a densely populated country. This dictates the need for a detailed analysis of the situation prior to the construction of nuclear power plant as required by the IAEA standards. This study reveals the correlation between seismic acceleration and potential damage. Procedures are presented for investigating the seismic hazard within the future NPP construction area. It has been shown that the obtained values of the earthquake’s peak ground acceleration are at the level below the design basis earthquake (DBE) level and will not lead to nuclear power plant malfunctions. For the most severe among the recorded and closely located earthquake centers (Madhupur) the intensity of seismic impacts on the nuclear power plant site does not exceed eight points on the MSK-64 scale. The existing predictions as to the possibility of a super-earthquake with magnitude in excess of nine points on the Richter scale to take place on the territory of the country indicate the necessity to develop an additional efficient seismic diagnostics system and to switch nuclear power plants in good time to passive heat removal mode as stipulated by the WWER 3+ design. A conclusion is made that accounting for the predicted seismic impacts in excess of the historically recorded levels should be achieved by the establishment of an additional efficient seismic diagnostics system and by timely switching the nuclear power plants to passive heat removal mode with reliable isolation of the reactor core and spent nuclear fuel pools.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
T. J. Katona ◽  
A. Vilimi

Nuclear power plants shall be designed to resist the effects of large earthquakes. The design basis earthquake affects large area around the plant site and can cause serious consequences that will affect the logistical support of the emergency actions at the plant, influence the psychological condition of the plant personnel, and determine the workload of the country’s disaster management personnel. In this paper the main qualitative findings of a study are presented that have been performed for the case of a hypothetical 10−4/a probability design basis earthquake for the Paks Nuclear Power Plant, Hungary. The study covers the qualitative assessment of the postearthquake conditions at the settlements around the plant site including quantitative evaluation of the condition of dwellings. The main goal of the recent phase of the study was to identify public utility vulnerabilities that define the outside support conditions of the nuclear power plant accident management. The results of the study can be used for the planning of logistical support of the plant accident management staff. The study also contributes to better understanding of the working conditions of the disaster management services in the region around the nuclear power plant.


Author(s):  
Esko Pekkarinen

Modernisation of control rooms of the nuclear power plants has been a major issue during the last few years. With this as a basis, the BWR plants in Sweden and Finland funded, in co-operation with the Halden Project, an experimental HAMBO BWR simulator project based on the Forsmark 3 plant in Sweden. VTT Energy in Finland developed the simulator models for HAMBO with the aid of their APROS tool, while the operator interface was developed by the Halden Project. The simulator and its performance have been described in other publications [1, 2]. On July 25th 2006 there was a short circuit at Forsmark 1 nuclear power plant when manoeuvring equipment in the 400kV-switch yard. Due to the short circuit, the plant suffered an electrical disturbance that led to scram and failure of two out of four diesel generators. The purpose of the study carried out at VTT in 2007 was to assess the capabilities of the HAMBO BWR simulator to handle Forsmark 1 type of events in different nuclear power plants (Forsmark 3 in this case). The Forsmark 1 incident showed (among other things) that the intention to protect certain components (in this case the UPS-system) can in certain situations affect negatively to the safety functions. It is concluded that most of this type of BWR transients may be simulated to a certain extent using the existing HAMBO- and APROS- models. A detailed modelling of the automation and electric systems is required sometimes if the complex interplay between these systems and the process is to be predicted reliably. The modelling should be plant specific and level of detail should be assessed case-by-case (i.e. what kind of transient is in question, what systems are available, what is the main purpose of the analyses etc.). The thermal-hydraulic models of the APROS-code seem to replicate well the real behaviour of thermal-hydraulic process provided that there is enough information about the transient in consideration.


Author(s):  
Walter Krämer ◽  
Gerhard Arminger

SummaryFor decades, there has been a heated debate about whether or not nuclear power plants contribute to childhood cancer in their respective neighbourhoods, with statisticians testifying on both sides. The present paper points to some flaws in the pro-arguments, taking a recent study prepared for the political party “Bündnis 90 /Grüne” as a specimen. Typical mistakes include an understatement of the size of tests of significance, disregard of important covariates and extreme reliance on very few selected data points.


Sign in / Sign up

Export Citation Format

Share Document